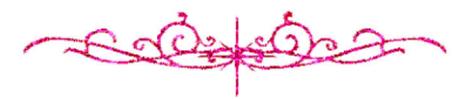


بسم الله الرحمن الرحيم


-cal-son

COEFOC CARGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFERS CARBORNER

بعض الوثائق

الأصلية تالفة

CORRECT CORRECTION

بالرسالة صفحات

لم ترد بالأصل

COEFERT CARGORNO

Development of novel systems for monitoring Hepatitis C Virus genotype 4a Non-Structural 3/4A protease activity

A thesis submitted for the degree of Ph.D. in Biochemistry

Submitted by

Mohamed Mohamed Naguib Qassium

(M.Sc. in Biochemistry 2011)

Under the supervision of

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry & Molecular Biology Faculty of Science Ain Shams University

Dr. Mohamed A. M. Ali

Assistant Professor of Biochemistry Faculty of Science Ain Shams University

> Faculty of Science Ain Shams University 2019

Contents

Contents	Page
> Acknowledgements	
➤ List of abbreviations	i
➤ List of figures	V
➤ List of tables	vii
> Abstract	
> Introduction	1
➤ Aim of the work	5
> Review of literature	6
Hepatitis C virus and Hepatitis C	6
HCV genotypes	7
HCV viral particle	10
HCV genome and proteins	11
The 5' Untranslated region (UTR)	13
The 3' Untranslated region (UTR)	14
Processing of the viral polyprotein	15
Structural proteins	16
1. Core protein	16
2. Envelope glycoproteins E1 and E2	17
3. Protein p7	19
Non-structural proteins	20
1. NS2 protein	20
2. NS3 protein	21

3. NS4A protein	23
4. NS4B protein	23
5. NS5A protein	24
6. NS5B protein	25
7. ARFP/F protein	26
HCV Life cycle and viral replication	28
1. Attachment and entry	30
2. Polyprotein translation and processing	34
3. RNA replication	36
4. Virion assembly and release	37
Diagnosis of hepatitis C	39
1. Serological assays (Anti-HCV antibody detection)	40
2. HCV RNA measurement	
a) Qualitative assays for HCV RNA detection	41
b) Qualitative RT-PCR	42
c) Quantitative HCV RNA detection	43
d) Competitive PCR	43
e) Branched DNA hybridization assay (Versant HCV	
RNA 3.0 quantitative assay)	44
f) Real-time PCR-based HCV RNA detection assays	45
Treatment of HCV	48
New drugs for hepatitis C	52
1. NS3/4A protease inhibitors	54
2. NS5B polymerase inhibitors	59
3. NS5A inhibitors	65
4. Compounds targeting viral attachment and entry	67
5. Host factors as targets for HCV treatment	
a) Cyclophilin B inhibitors	67
6. RNA interference-based treatment strategies	68
Model systems for HCV research	69
1. HCV replicon system	70

2. HCV pseudotype virus particles (HCVpp)	72
3. Infectious HCV particles in cell culture (HCVcc)	73
4. Small animal models	74
➤ Materials and Methods	76
Materials	76
1. Purified rabbit anti-GST antibodies	76
2. Bacterial Strains	76
3. Vectors	76
4. Oligonucleotide primers	77
5. Culture Media: Luria-Bertani (LB) medium	77
6. Antibiotics	78
7. PCR reagents	78
8. Enzymes	79
9. Protein analysis reagents and antibodies	79
10. Kits	80
11. Supplies	80
12. Reagents	80
Methods	92
1. Polymerase chain reaction amplification of HCV	
NS3/4A protease cDNA fragments	92
2. Cloning of amplified HCV NS3 ₂₋₁₈₁ segment into	
pGEM-T vectors followed by bacterial	
transformation into competent cells	95
a) Ligation reaction	96
b) Preparation of competent cells	97
c) Transformation of competent cells	98
d) Selection of positive transformants	99
Blue/White color selection	99
 Cracking gel analysis 	99
e) Small scale preparation from the white colonies	100
f) Restriction enzyme digestion of recombinant	

pGEM-T vector	103
Restriction enzyme digestion	103
Agarose gel electrophoresis	104
3. Subcloning of the HCV NS3/4A cDNA fragments	
into pGEX-4T-1 expression vector	
a) Preparation and digestion of the expression vector	
pGEX-4T-1 and the positive recombinant pGEM-T	
vectors	104
b) Ligation of the digested HCV DNA fragments and	
expression vector pGEX-4T-1	106
c) Preparation of competent cells and Transformation	
-	107
d) Small scale plasmid DNA preparation of	100
recombinant pGEX-4T-1 construct	108
e) Colony PCR	108
4. Expression of the fusion protein	110
a) Small scale induction of the fusion protein	111
b) Analysis of the expressed proteins	
SDS-polyacrylamide gel electrophoresis	111
(SDS-PAGE)	111
Western blot analysis	114
5. Cloning of HCV5A/5B cleavage site into pGEM-	
T vector followed by transformation into competent	
cells	117
a) Ligation reaction	116
b) Transformation of competent cells, selection of	117
positive transformants and colony PCR	117
6. Co-transformation of the cells containing NS	
protease with β-gal HCV 5A5B and β-gal HCV mt5A5B plasmids	117
	11/
7. Assessment of the β -galactosidase enzyme activity encoded by the recombinant pGEM-T vector	
containing either the native or mutant NS3/4A	

protease substrate	118
 β-galactosidase Assay 	119
8. Evaluation of the inhibitory potency of the test compounds on the activity of HCV NS3/4A protease	120
9. An alternative assay for measuring the β-galactosidase activity to evaluate the inhibitory potency of the test compounds against HCV NS3/4A protease	123
> Results	124
Polymerase chain reaction amplification of HCV NS3/4A cDNA fragment	124
Cloning of the amplified HCV NS3/4A fragment into pGEM-T vector	125
Sub-cloning of the HCV NS3 protease frgament into the pGEX-4T-1 expression vector	127
Expression of the recombinant pGEX4T-1 containing the HCV NS3/4A protease sequence	131
Cloning of HCV5A/5B cleavage site into pGEM-T vector	132
Assessment of the β-galactosidase enzyme activity encoded by recombinant pGEM-T vector containing the native or mutant NS3/4A protease substrate	134
Evaluation of the inhibitory potency of the test compounds on the activity of HCV NS3/4A protease	136
An alternative assay for measuring the β-galactosidase activity to evaluate the inhibitory potency of the test compounds against HCV NS3/4A	
protease	138
> Discussion	140

> Summary	150
> References	152
الملخص ح	
المستخلص ح	

This thesis has not been submitted before to this or any other university

Mohamed Mohamed Naguib gassium

ACKNOWLEDGEMENTS

First of all, cordial thankfulness to "Allah" who enabled me to finish this piece of work appropriately.

I am deeply indebted to **Prof. Dr. Amr Mahmoud Karim**, for his valuable supervision, continuous encouragement, patience and advice during this work.

I would like to express my deep appreciation and gratitude to *Prof. Dr. Mohamed Ragaa Mohamed*, for his consistent supervision, constructive suggestions and above all for his moral support and scientific guidance.

I also owe my sincere thanks and gratitude to **Dr. Mohamed A. M. Ali**, for his great support, helpful advice, valuable technical assistance and fruitful comments.

I wish to acknowledge my professors and colleagues in *Dr. Amr Karim's* laboratory and the Biochemistry Department for their support and assistance.

Finally, I would like to convey my thanks to my family for their support and encouragement.

Mohamed Mohamed Naguib gassium