

Ain Shams University Faculty of Engineering Electronics and Communications Department

DC-DC Converter for Low-Energy Wireless Applications

A Thesis submitted in partial fulfillment for the requirements of a Master of Science degree in Electrical Engineering Electronics and Communications

Engineering Department

Mahmoud Abdelwahab Ahmed Ahmed Khalil

B.Sc. of Electrical Engineering
(Electronics and Communications Engineering Department)
Ain Shams University, 2013

Supervised by
Prof. Emad Eldin Mahmoud Hegazi
Assoc. Prof. Mohamed Ahmed Mohamed El-Nozahi

Cairo 2019

Ain Shams University Faculty of Engineering Electronics and Communications Department

DC-DC Converter for Low-Energy Wireless Applications

by

Mahmoud Abdelwahab Ahmed Ahmed Khalil

B.Sc. of Electrical Engineering (Electronics and Communications Engineering Department)
Ain Shams University, 2013

Examiners' Committee

Title, Name and Affiliation	Signature
Prof. Serag ElDin Habib	
Faculty of Engineering, Cairo University,	
Electronics and Communications Engineering Dept.	
Prof. Hani Fikry Ragai	
Faculty of Engineering, Ain Shams University,	
Electronics and Communications Engineering Dept.	
Assoc. Prof. Mohamed Ahmed Mohamed El-Nozahi	
Faculty of Engineering, Ain Shams University,	
Electronics and Communications Engineering Dept.	
Prof. Emad Eldin Mahmoud Hegazi	
Faculty of Engineering, Ain Shams University,	
Electronics and Communications Engineering Dept.	

Date: 30/01/2019

Statement

This Thesis submitted in partial fulfillment for the requirements of a Master of Science degree in Electrical Engineering Electronics, and Communications Engineering Department.

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Mahmoud Abdelwahab Ahmed Ahmed Khalil

Signature :

Date: 30/01/2019

Researcher Data

Name: Mahmoud Abdelwahab Ahmed Ahmed Khalil

Date of Birth: 10/05/1991

Place of Birth: Mecca Al-Mukarramah, Saudi Arabia

Last Academic Degree: B.Sc. in Electrical Engineering

Field of Specialization: Electronics and Communications

University issued the degree: Ain Shams University

Date of issued degree: 2013

Current job: Senior RF/AMS Design Engineer at Si-Vision

Acknowledgments

First of all, all thank to Allah for giving the chance, strength and making me able to complete this work.

I would like to express my gratitude to my family. Many thanks to my supervisors Prof. Emad Hegazi and Prof. Mohamed El-Nozahi for their guidance, wise advice, useful suggestions, continuous motivation, and feedback.

I am very grateful to all the IC Lab professors and my first career mentor, Mohamed Abdelaal, ex-Staff Design Engineer at Si-Vision, who introduced me to the world of power management, as well as Mo'men Mansour, ex-Team Leader at Si-Vision, for his valuable ideas and comments to improve my work. I'd like also to thank Eng. Ahmed Helmy and Botros Iskandar for supervising my graduation project, as it was the first step to start my journey into IC design. I'd like also to thank Eng. Mohamed Samir, Eng. Ahmed Salah and Eng. Mohammed Tawfik for giving me the opportunity to work as an Analog/RF Design engineer at Si-Vision. This industrial experience and lab testing across different nodes greatly improve my knowledge and skills in the IC Design. Finally, I cannot forget to thank my dear colleagues Mohamed Ibrahim, Mahmoud Yousry, Mahmoud Mabrouk, Mahmoud Mohsen, Ahmed Farag, Sherif Diaa, Nour-Eldin Hany, Ahmed El-Sayed, Amr Ahmed, Khalid Hafez and Anass Wanass for the many technical discussions and continuous support.

Mahmoud Abdelwahab Ahmed Ahmed Khalil Electronics and Communications Engineering Department Ain Shams University, Cairo, Egypt January 2019 Faculty of Engineering – Ain Shams University

Electronics and Communications Engineering Department

Thesis title: DC-DC Converter for Low-Energy Wireless Applications

Submitted by: Mahmoud Abdelwahab Ahmed Ahmed Khalil

Degree: Master of Science in Electrical Engineering

Abstract

Mahmoud Abdelwab Ahmed Ahmed Khalil "DC-DC Converter for Low-Energy Wireless Applications", Master of Science dissertation, Ain Shams University, 2019.

The demand on DC-DC converter increases as the scaling of CMOS technologies into the nanometer scale imposes lower supply voltage than the battery voltage which is defined by its electrochemical properties' limitations. Highefficiency DC-DC converters are needed to extend the battery life. This thesis aims to design a high efficiency and a low voltage ripple DC-DC Converter for low-energy wireless applications. The proposed converter is implemented using UMC130nm CMOS technology with a new design methodology and startup technique to reduce the power-up consumed energy and the startup time variations. The proposed buck inductor peak current is well-controlled at all inductance, input, and output voltage range using a simple replica circuit matched to the PMOS switch. An automatic background calibration is introduced to sustain converter stability and reduce the regulator voltage ripple across different load, supply and external components values. Simulation results show that the proposed converter minimizes ripple magnitude and variations especially at light loads while maintaining good efficiency results. Finally, a new FoM is introduced to compare all PFM buck designs.

Keywords: Low-Energy Transceivers, Inductor-based switching regulator, Pulse frequency modulation DC-DC converter, Adaptive on-time buck converter, Low-ripple DCM buck converter.

Faculty of Engineering – Ain Shams University

Electronics and Communications Engineering Department

Thesis title: DC-DC Converter for Low-Energy Wireless Applications

Submitted by: Mahmoud Abdelwahab Ahmed Ahmed Khalil

Degree: Master of Science in Electrical Engineering

Summary

This thesis is divided into six chapters including the lists of contents, tables, figures and references as follows:

Chapter 1 is an introduction highlighting the challenges and the main contributions of the thesis, followed by the outline of the thesis.

Chapter 2 includes a survey between all the switching regulators' topologies in terms of voltage ripples, load current and power efficiency. This chapter describes the selected buck converter in-detail.

Chapter 3 depicts the system design specifications resulting from supplying wide range of noise-sensitive loads and illustrates the voltage ripple briefly including its variations with load current, supply voltage and passives values. This chapter includes a survey for spurious noise reduction and different startup techniques. A new FoM is introduced to allow absolute comparison between PFM different designs through meaningful parameters.

Chapter 4 shows the proposed converter circuit implementation. This chapter starts with BIAS top design and then illustrates the main operation of the final circuits design. Also, a new technique is adopted to generate a constant inductor peak current at all inductance, input and output voltage ranges. The chapter ends with a new background calibration technique to reduce the regulator ripple variations across different load, supply and external components values while maintaining converter stability.

Chapter 5 shows all the simulation results for the proposed buck converter across different scenarios and PVT corners. It also depicts the achieved results summary, the proposed converter area estimate, and the initial floorplan.

Chapter 6 is the conclusion of this work and the possible future work that needs to be added.

Contents

C	onter	nts	xiii
Li	List of Figures		
Li	st of	Tables	xix
Li	st of	Abbreviations	xxi
1	Intr	$\mathbf{roduction}$	1
	1.1	Motivation	. 1
	1.2	Main Contributions	. 5
	1.3	Thesis Organization	. 6
2	Buc	k Converter Topologies and Detailed Analysis	7
	2.1	Switching Regulators	. 7
	2.2	Inductor-based Switching Regulators	. 8
	2.3	Pulse Frequency Modulation Analysis	. 10
		2.3.1 Basic Operation	. 11
		2.3.2 Steady-State Voltage Conversion Ratio	. 13
		2.3.3 Voltage Ripple	. 18
		2.3.4 Switching Frequency	. 19
		2.3.5 Power Efficiency	. 21
	2.4	PFM Control Schemes	. 25
3	\mathbf{Sys}^{1}	tem Specifications and Design Issues	31
	3.1	System Specifications	. 33
		3.1.1 Previous Designs	. 36
		3.1.2 Target Specifications	. 40

	3.2	Design	n Issues
		3.2.1	Variable Switching Frequency
		3.2.2	Spurious Noise and Reduction Techniques 42
		3.2.3	Voltage Ripple Variations
		3.2.4	Power-up Consumed Energy 50
	3.3	Propo	sed Figure of Merit
4	Pro	\mathbf{posed}	Converter Circuit Design 55
	4.1	Voltag	ge and Current Reference Circuits
	4.2	Propo	sed Buck Converter
		4.2.1	Power-down and Programmability 64
		4.2.2	Minimum PMOS/Idle-state Time 66
		4.2.3	Startup Technique
		4.2.4	FSM Logic Implementation 69
	4.3	Propo	sed Background Calibration
5	Sim	ulatio	n Results and Performance Comparison 77
	5.1	Simula	ation Results
		5.1.1	Bias Circuitry and LDO
		5.1.2	Power-FETs
		5.1.3	Comparators
		5.1.4	Optimized Design at light loads (10mA) 90
		5.1.5	Proposed Design Typical Waveforms at 100mA 91
		5.1.6	Different Startup Techniques
		5.1.7	Optimum Inductance for Wide Load Range 95
		5.1.8	Proposed Inductor Peak Current Control 95
		5.1.9	Proposed Background Calibration 96
	5.2	Perfor	mance Comparison
	5.3	Area I	Estimate and Initial Floorplan
6	Con	clusio	n and Future Work 107
	6.1	Concl	usion
	6.2	Sugge	stions and Future Work
Pι	ıblic	ations	111

References 113

List of Figures

1.1	Portable battery-powered devices	1
1.2	A typical SoC	2
1.3	Linear regulator vs switching regulator	3
1.4	A switching regulator followed by different LDOs	4
2.1	Inductor-based versus inductor-less switching regulators	8
2.2	PWM versus PFM control schemes	9
2.3	CCM versus DCM waveforms	10
2.4	PMOS on-time phase	11
2.5	NMOS on-time phase	12
2.6	Idle phase	12
2.7	Snubber circuit	13
2.8	Boundary between DCM and CCM	14
2.9	K versus PMOS duty cycle	15
2.10	Conversion gain versus PMOS duty cycle	17
2.11	DCM PFM waveforms	18
2.12	PFM switching frequency vs load current	21
2.13	Buck converter block diagram indicating the critical parasities $$.	22
2.14	Switching events waveforms at DCM	22
2.15	Hysteretic architecture [9]	25
2.16	$Constant/Adaptive\ PMOS\ on\mbox{-time architecture}\ [20,\ 21]\ .\ .\ .\ .\ .$	26
2.17	Adaptive on-time circuit [21, 36]	27
2.18	Constant inductor peak current architecture [34, 37]	28
3.1	The conventional power management system	32
3.2	The proposed power management system	32
3.3	The proposed Wi-Fi transceiver block diagram	35
3.4	Dialog and TI power efficiency results versus battery voltage	36

3.5	Zero Comparator Calibration	37
3.6	TI ripple variations across different V_{IN} and I_L values	38
3.7	Adaptive PFM converter across different I_L and L values	38
3.8	External LC-filter including parasitics	41
3.9	Buck converter output spectrum	41
3.10	V_{SW} transient behavior during the frequency hopping	42
3.11	Traditional frequency hopping output spectrum	43
3.12	Optimized frequency hopping technique output spectrum	43
3.13	V_{ripple} and F_{SW} versus load current	44
3.14	Conventional PFM versus proposed converter ripple behavior $$.	45
3.15	Voltage ripple versus load current across different \mathcal{I}_P values	45
3.16	Inductor current across different load values: (a) Light loads (b)	
	Heavy loads	47
3.17	Inductor current across different L : (a) PMOS on-time tech-	
	niques (b) Constant inductor peak current technique	47
3.18	Proposed controller V_{ripple} versus I_L	48
3.19	PFM steady-state waveforms	48
3.20	Voltage ripple across different L and I_L values	49
3.21	Converter options: a) an always-ON ultra-low- I_Q converter b)	
	a moderate- I_Q converter powered-up with the transceiver enable	50
3.22	I_{IN} across different startup techniques: a) bypass startup tech-	
	nique b) soft startup technique	52
4.1	Proposed converter indicating the self-regulation scheme	56
4.2	Proposed voltage level shifter circuit	56
4.3	Proposed LDO circuit diagram	57
4.4	Bandgap voltage reference circuit diagram	57
4.5	Proposed poly/constant current generators $\dots \dots \dots$	58
4.6	LDO, Poly current and Constant current generators OTA $$	59
4.7	Proposed buck converter block diagram	60
4.8	$I_{L,max}$ comparator circuit diagram	61
4.9	$I_{L,zero},OV,V_{out,min}$ and UV comparators circuit diagram	61
4.10	Proposed converter power switches and pre-drivers	62
4.11	DCM inductor current versus time	63
4.12	I_p -controllers: a) PMOS on-time technique b) Replica technique	63

4.13	Proposed power-down scheme	64
4.14	Voltage reference programmability	65
4.15	Current mirrors programmability	65
4.16	Proposed converter including min. $T_{on,PMOS}$ and min. T_{idle}	66
4.17	Proposed min. $T_{on,PMOS}$ and min. T_{idle} circuits diagram	67
4.18	Proposed converter including different startup techniques	68
4.19	State diagram for the proposed converter power modes	69
4.20	Proposed converter power-states FSM	70
4.21	Logic implementation for power-states FSM	70
4.22	Main PFM FSM block diagram	71
4.23	State-diagram for the main PFM converter FSM	71
4.24	FSM logic optimization using Logic-Friday	72
4.25	Logic implementation for the main PFM converter FSM	73
4.26	UV comparator and min. T_{idle} versus time	74
4.27	Proposed T_{idle} background calibration circuit diagram	74
4.28	T_{idle} and I_P calibration versus time	75
4.29	Proposed converter load regulation versus time	76
5.1	V_{BGR} and V_{LDO} values across temperature	77
5.2	V_{BGR} value across PVT corners	78
5.3	V_{LDO} value across PVT corners	78
5.4	V_{BGR} value versus trimming word	79
5.5		
5.5	V_{BGR} and V_{LDO} power supply rejection ratio	79
5.6	V_{BGR} and V_{LDO} power supply rejection ratio LDO stability (loop gain and phase) versus frequency	
		80
5.6	LDO stability (loop gain and phase) versus frequency $\ \ \ldots \ \ .$	80 80
5.6 5.7	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners	80 80 81
5.6 5.7 5.8 5.9	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners I_{Poly} and I_{Const} values across temperature	80 80 81 81
5.6 5.7 5.8 5.9 5.10	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners I_{Poly} and I_{Const} values across temperature Poly current generator stability (loop gain and phase)	80 80 81 81 82
5.6 5.7 5.8 5.9 5.10 5.11	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners I_{Poly} and I_{Const} values across temperature Poly current generator stability (loop gain and phase)	80 80 81 81 82 82
5.6 5.7 5.8 5.9 5.10 5.11 5.12	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners	80 80 81 81 82 82 83
5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners $I_{Poly} \text{ and } I_{Const} \text{ values across temperature } $	80 80 81 81 82 82 83 83
5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners $I_{Poly} \text{ and } I_{Const} \text{ values across temperature } $	80 80 81 81 82 82 83 83 84
5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15	LDO stability (loop gain and phase) versus frequency LDO stability (loop gain and phase) across corners $I_{Poly} \text{ and } I_{Const} \text{ values across temperature } $	80 80 81 81 82 82 83 83 84 84

5.18	Proposed comparators gain vs frequency	86
5.19	Proposed comparators DC outputs vs $V_{in,diff}$	86
5.20	High input CM comparator output vs time	87
5.21	Low input CM comparator output vs time	88
5.22	OV & UV comparator outputs vs time	88
5.23	High input CM comparator output across PVT corners	89
5.24	Low input CM comparator output across PVT corners	89
5.25	Voltage ripple versus supply across different load current values	90
5.26	Power efficiency vs. load current across different supply values .	90
5.27	V_{OUT}, V_{SW} and I_{ind} typical waveforms	91
5.28	Proposed converter controls typical waveforms	92
5.29	Typical pre-driver waveforms	92
5.30	Typical $min.T_{on,PMOS}$ circuit waveforms	93
5.31	Efficiency vs. C_{out} across different startup techniques	94
5.32	V_{OUT} vs. time across different startup techniques and corners	94
5.33	Voltage ripple versus inductance value	95
5.34	Inductor peak current versus inductance value	96
5.35	Voltage ripple versus load current	97
5.36	Inductor peak current versus load current	97
5.37	Switching frequency versus load current	98
5.38	Power efficiency versus load current	98
5.39	Detailed losses at heavy load (100mA) using L=1.5uH, C_{out} =4.7uF	
	and $V_{OUT}=1$ V	99
5.40	Detailed losses at light load (5mA) using L=1.5uH, C_{out} =4.7uF	
	and V_{OUT} =1V	99
5.41	Proposed converter output spectrum at 5mA load	100
5.42	Proposed converter output spectrum at 100mA load	100
5.43	Load regulation and V_{OUT} transient response	101
5.44	The contribution of each block compared to the overall area	
	estimate	L04
5.45	The proposed converter initial floorplan and area estimate in	
	detail	105