

Evalution of circulating fibroblast growth factor 21 in Type 2 diabetic patients with nephropathy

A Thesis

Submitted for the degree of Master of Science

As a partial fulfillment for requirements of the master of Science

Biochemistry

Sahar Mohamed Farag El-Sayed

(B. Sc.in Biochemistry- Ain Shams University 1991)

Supervised by

Prof. Dr. Azza Ahmed Atef Prof. Dr. Magda Kamal Ezz

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Mohamed Hesham Mohamed Mahfouz

Professor of Biochemistry Department National Institute of Diabetic and Endocrinology (NIDE)

2019

Acknowledgement

First and foremost cordial thanks to Allah, the most Merciful, to whom I owe support and success in my whole life.

No words could express my deep gratitude and sincere appreciation to Prof. Dr. Azza Ahmed Atef, professor of biochemistry, faculty of Science, Ain Shams University, for her great effort exerted, endless help, close supervision, creative thinking, valuable suggestions and advice for this work.

I wish to express my good indebtedness and sincere gratitude to Prof. Dr. Magda Kamal Ezz, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for her kind guidance, patience, sincere encouragement, valuable advice and strong Co-operation.

I would like to express my deepest gratefulness to Prof. Dr. Mohamed Hesham Mohamed Mahfouz, Professor of Biochemistry, Biochemistry department, National Institute of Diabetes and Endocrinology (NIDE) for his perpetual guidance, creative thinking and tremendous concern.

Declaration

This thesis has not been submitted for a degree at this or any other university

Sahar Mohamed Farag El-Sayed

Biography

-Name:

Sahar Mohamed Farag El-Sayed.

-Date of graduation:

May 1991, Faculty of Science,

-Biochemistry Department,

Ain Shams University.

-Degree awarded:

B.Sc. in Biochemistry Special (Very Good)

I dedicate this thesis to

The memory of my father and my mother whom I still miss every day.

My mother who had a great virtue to reach my situation nowadays, she was the motivator and supporter for my dreams to become true.

I also dedicate this thesis to my small family, my husband and lovely daughters for their help, encouragement, patience, care and support.

My sisters for their valuable advice, unlimited help and cooperation, They gave me the love for my great family.

Table of Contents

Content List	Page no.
Abstract	i
List of Figures	iii
List of Tables	V
List of Abbreviations	vi
Introduction	X
Aim of the work	XV
I-Review of Literature	1
I.1. Type 1 diabetes mellitus	5
I.2. Type 2 diabetes mellitus	10
I.2.1.Obesity and insulin resistance	15
I.2.2.Insulin resistance	18
I.3. Gestational diabetes mellitus	22
I.4. Diabetic nephropathy	24
I.4.1. Models of renal albumin processing and mechanism of albuminuria	26
I.5. Fibroblast growth factor 21	31
I.5.1. Discovery	31
I.5.2. Structure	32
I.5.3. FGF 21 receptor and signaling	33
I.5.4. Biological roles of FGF21	35
I.6. FGF21 and Diabetic nephropathy	37
II-Subjects and Methods	40
II.1. Subjects	40

II.2. Methods	43
II.2.1. Determination of plasma glucose	43
II.2.2. Determination of glycated haemoglobin (HbA1c)	44
II.2.3. Determination of serum insulin	48
II.2.4. Measurement of insulin resistance	53
II.2.5.Human fibroblast growth factor 21	53
II.2.6. Determination of serum total cholesterol	58
II.2.7. Determination of serum triacylglycerol	60
II.2.8. Determination of serum high density lipoprotein cholesterol (HDL-C)	62
II.2.9.Measurement of serum low density lipoprotein cholesterol (LDL-C):	64
II.2.10.Measurement of serum very low density lipoprotein cholesterol (VLDL-C):	64
II.2.11. Measurement of atherogenic index1 and 2	64
II.2.12. Determination of serum cystatin C	64
II.2.13.Determination of serum creatinine	70
II.2.14. Determination of serum urea	71
II.2.15.Measurement of BUN	73
II.2.16. Determination of microalbumin in urine	73
II.2.17. Determination of creatinine in urine	75
II.2.18. Measurement of A/C ratio	76
II.2.19. Measurement of glomerular filtration rate (eGFR)	76
II.2.20. Determination of serum albumin	77
II.3. Statistical analysis	78
III-Results	79

IV-Discussion	113
V-Summary and conclusion	131
VI-References	138
المستخلص العربي	٣-١
الملخص العربي	٤-١

Alutract

Abstract

Background: Microalbuminuria is often cited as a sensitive early marker for diabetic kidney disease and is thought to precede the more detrimental events seen in advanced stages of diabetic nephropathy.

Aim: The aim of this study was to evaluate the levels of Fibroblast growth factor 21, a modulator of cellular activities, in the different stages of diabetic albuminuria in an attempt to examine the possibility of considering FGF21 as a predictor marker of diabetic nephropathy in Type 2 diabetic patients whom at risk of that disease.

Subjects and Methods: Eighty subjects were enrolled in this study: 20 normal controls were age and sex matched with 60 Type 2 diabetics. Diabetic groups were classified according to albumin/creatinine ratio (A/C ratio) into diabetic group with normoalbuminuria (A/C ratio<30 mg/g), with microalbuminuria (A/C ratio =30-299 mg/g) and with macroalbuminuria (A/C ratio \ge 300 mg/g). Serum FGF21, diabetic biomarkers, lipid profile, kidney functions and serum albumin were evaluated in this study.

Results: Serum FGF21 showed a progressive increase in the diabetic groups parallel to the degree of albuminuria. In Type2 diabetic normo, micro and macroalbuminuria groups, there were significant increases (P < 0.001) in the glucose (FPG), levels fasting plasma hemoglobin (HbA1c), serum insulin, HOMA-IR, total cholesterol (TC), triacylglycerols (TAGs), low density (LDL-C), lipoprotein-cholesterol very low lipoprotein-cholesterol (vLDL-C), atherogenic index 1 and 2, while, serum high-density lipoprotein-cholesterol (HDL-C) showed a significant decrease (P < 0.001) as compared to the control group. Serum levels of FGF21 as well as kidney function tests (s. cyctatin C, s. creatinin, s. urea, BUN) primarily cyctatin C were progressively increased (P<0.001) parallel to the degree of albuminuria

Alstract

compared with the normal controls. Furthermore, in diabetic macroalbuminuria group serum albumin levels showed a significant decrease (P<0.05) whereas, in diabetic micro and macroalbuminuria groups creatinine in urine and estimated glomerular filtration rate (eGFR) significant decreases (P<0.001) and microalbumin in urine and A/C ratio showed significant increases (P<0.001) as compared to the control group. There were significant positive correlations between FGF21 from one hand and FPG and cystatin C, while it showed significant negative correlation with eGFR in all diabetic groups. Furthermore, FGF21 showed significant positive correlations with s. creatinine, urea and BUN, while it showed significant negative correlation with serum albumin in diabetic microalbuminuia and macroalbuminuria diabetic patients. However, FGF21 showed significant positive correlations with insulin and HOMA-IR in macroalbuminuria diabetic patients.

Conclusion: These results concluded that FGF21 found to be associated with the degree of hyperglycemia and s. cystatin in Type 2 diabetic patients with different degree of albuminuria and can be used as a biomarker for predicting microalbuminuria and macroalbuminuria in Type 2 diabetic patients.

List of Figures

Figure		
number	Title	Page
Fig.(1)	Model A of autoimmune basis of IDDM.	8
Fig.(2)	Model B of the autoimmune basis of IDDM.	9
Fig.(3)	Combined impact of genetic makeup, environmental and social factors in the development of type 2 diabetes.	14
Fig.(4)	The contribution of each tissue or organ to T2DM	15
Fig.(5)	Obesity and the development of inflammation and insulin resistance (IR).	18
Fig.(6)	Inhibitory pathway of glucose transporter 4 (GLUT4) translocation by free fatty acids.	21
Fig.(7)	Direct interaction of insulin signaling and inflammatory pathways.	22
Fig.(8)	Mechanism of albuminuria.	27
Fig.(9)	Glomerular structural and functional relationships as determinants of GFR.	30
Fig.(10)	FGF21 binding with its receptor and co-factor.	35
Fig.(11)	Standard curve of insulin.	52
Fig.(12)	Standard curve of FGF21.	57
Fig.(13)	Standard curve of cystatin C.	69
Fig.(14)	% change of the mean values of FPG, HbA1c, insulin, HOMA-IR and FGF21 in diabetic patients groups.	84
Fig.(15)	% change of the mean values of TC, TAG, HDL-C, LDL-C, VLDL-C, atherogenic index 1 and atherogenic index 2 in diabetic patients groups.	90
Fig.(16)	% change of the mean values of s. cystatin C, creatinine, Urea and BUN in diabetic patients groups.	94
Fig.(17a)	% change of the mean values of microalbumin in urine and A/C ratio in diabetic patients groups	98
Fig.(17b)	% change of the mean value of creatinine in urine, eGFR and s.albumin in diabetic patients groups compared to normal controls.	99

List of Figures

Figure		
Figure number	Title	Page
	Linear correlation between FGF21 and FPG in	
Fig.(18)	G:II	103
Fig.(19)	Linear correlation between FGF21 and s.cystatin C in GII	103
Fig.(20)	Linear correlation between FGF21 and eGFR in G:II	104
Fig.(21)	Linear correlation between FGF21 and FPG in G:III	104
Fig.(22)	Linear correlation between FGF21 and s. cystatin c in G:III	105
Fig.(23)	Linear correlation between FGF21 and s.creatinine in G:III.	105
Fig.(24)	Linear correlation between FGF21 and urea in G:III.	106
Fig.(25)	Linear correlation between FGF21 and BUN in G:III.	106
Fig.(26)	Linear correlation between FGF21 and eGFR in G:III.	107
Fig.(27)	Linear correlation between FGF21 and s.albuminin G:III.	107
Fig.(28)	Linear correlation between FGF21 and FPG in G:IV.	108
Fig.(29)	Linear correlation between FGF21 and Insulin in G:IV.	108
Fig.(30)	Linear correlation between FGF21 and HOMA-IR in G:IV.	109
Fig.(31)	Linear correlation between FGF21 and s.cystatinC in G:IV.	109
Fig.(32)	Linear correlation between FGF21 and s.creatinie in GIV.	110
Fig.(33)	Linear correlation between FGF21 and Urea in G:IV.	110
Fig.(34)	Linear correlation between FGF21 and BUN in G:IV.	111
Fig.(35)	Linear correlation between FGF21 and eGFR in	111
F: (2.6)	G:IV.	
Fig.(36)	Linear correlation between FGF21 and s.albumin in G:IV.	112

List of Tables

Table number	Title	Page
Table(1)	Etiological classification of diabetes mellitus, according to American Diabetes Association.	3
Table(2)	Gestational diabetes mellitus diagnostic threshold values from various organizations.	23
Table(3)	Metabolic effects of FGF21 in animal models.	37
Table(4)	General characteristics features in the different studied groups.	80
Table(5)	Fasting plasma glucose, HbA1c, insulin, HOMA-IR and FGF21 in normal controls, diabetic Type 2 normoalbuminuria, diabetic Type 2 micro-albuminuria and diabetic Type 2 macroalbuminuria.	83
Table(6a)	Total cholesterol, TAGs, HDL-C and LDL-C in normal controls and diabetic Type 2 normoalbuminuria, diabetic Type 2 microalbuminuria and diabetic Type 2 macroalbuminuria.	88
Table(6b)	VLDL-C, atherogenic index 1 and atherogenic index 2 in normal controls and diabetic Type 2 normoalbuminuria, diabetic Type 2 microalbuminuria and diabetic Type 2 macroalbuminuria.	89
Table(7)	S.cystatin C, creatinine, urea and BUN in normal controls, diabetic Type 2 normoalbuminuria, diabetic Type 2 microalbuminuria and diabetic Type 2 macroalbuminuria.	93
Table(8)	Microalbumin in urine, creatinine in urine, A/C ratio, eGFR and s. albumin in normal controls Type 2 normoalbuminuria, diabetic Type 2 microalbuminuria and diabetic Type 2 macroalbuminuria.	97
Table(9)	Correlation between FGF 21 levels and other parameters in different groups of diabetic patients.	102

List of Abbreviations

Acetyl CoA	Acetyl coenzyme A
ACOG	American council of Obstetricians and Gynecologists
A/C	Albumin/creatinine
ADA	American Diabetes Association
AKT	v-akt murine thymoma viral oncogene homolog
AP-1	Activating protein-1
BAT	Brown adipose tissue
BMI	Body mass index
BUN	Blood urea nitrogen
CAD	Coronary artery disease
CAL	Calibration
CAP	Cb1-associated protein
CKD	Chronic kidney disease
CNS	Central nervous system
Conc	Concentration
CVD	Cardiovascular disease
D2M	Type two diabetes
DKD	Diabetic kidney disease
DM	Diabetes mellitus
eGFR	estimated glomerular filtration rate
ELIZA	Enzyme-linked immunosorbent assay
ERK	Extracellular regulated kinase
ESRD	End stage renal disease
FATP-1	Fatty acid –transport protein 1
FFAs	Free fatty acids
FGF	Fibroblast growth factor