

Circulating CD4⁺CD28^{null} T cells and its Association with Atherosclerotic Changes in Patients with End Stage Renal Disease

Thesis

Submitted for partial fulfillment of MD Degree in Internal Medicine

By

Nelly Nader Gendy

M.Sc Internal Medicine, Faculty of Medicine, Ain Shams University Supervised by

Professor/Ashraf Mahmoud Okba

Professor of Internal Medicine and Head of Internal Medicine Department

Head of Allergy and Clinical Immunology Department Faculty of Medicine, Ain Shams University

Professor/Mannar Abd El Raouf Raafat

Professor of Internal Medicine and Nephrology Theodor Bilharz Research Institute

Professor/Mohamed Nazmy Farres

Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine, Ain Shams University

Dr/Nermine Abd El Nour Melek

Assistant Professor of Internal Medicine, Allergy and Clinical Immunology

Faculty of Medicine, Ain Shams University

Dr/Mariam Maged Amin

Lecturer of Internal Medicine, Allergy and Clinical Immunology
Faculty of Medicine, Ain Shams University
Faculty of Medicine
Ain Shams University
2019

Acknowledgment

"First and Foremost, Thanks are Due to GOD"

I would like to express my deepest gratitude and sincere thanks to **Professor Ashraf Mahmoud Okba**, Professor of Internal Medicine and Head of Internal Medicine Department, Head of Allergy and Clinical Immunology Department, Faculty of Medicine Ain Shams University, for his instructive supervision, continuous guidance, valuable instructions throughout the work.

I wish to express my tender thanks and deepest gratitude towards **Professor Mannar Abdel Raouf Raafat**, Professor of Internal Medicine and Nephrology, Theodor Bilharz Research Institute, for her continuous guidance, valuable suggestions, unlimited help.

Whatever I say or write, I will never be able to express my deep feelings and profound gratitude to **Professor Mohamed Nazmy Fares**, Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University for suggesting and planning the design of the work, offering all facilities for the work, instructive supervision and valuable instructions.

I am greatly indebted to **Dr. Nermine Abd El Nour Melek**, Assisstant Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, for her instructive guidance, continuous support, advice and repetitive revision of the manuscript.

My particular sincere thanks and profound gratitude are due to **Dr. Mariam Maged Amin**, Lecturer of Internal Medicine

, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, for her continuous guidance , advice , extreme cooperation , tremendous help ,support and repetitive revision of the manuscript.

I am extremely grateful to **Professor Amna Ahmed Metwally** Professor of Intensive Care Unit and Head of Intensive
Care Unit, Theodor Bilharz Research Institute for her unlimited
efforts in the carotid duplex examination, she gave me much of
her time, advise and effort throughout this work.

Many thanks to **Dr. Omar Mohamed Sabry**, Assisstant Professor in Hematology and Blood Bank Department, Theodor Bilharz Research Institute, for his continuous guidance, advice, extreme cooperation and tremendous help and support.

In fact, I owe much to my colleagues and the staff members of Nephrology Department, Theodor Bilharz Research Institute, for their kind help and support.

I express my deepest gratitude to my family for their extended love, care and support.

Nelly Nader Gendy

List of Contents

	Page
List of abbreviations	i
List of tables	vi
List of figures	vii
Introduction	1
Aim of the study	3
Review of literature	
Chapter one : End Stage Renal Disease	4
Chapter two: Atherosclerosis	18
Chapter three: CD4 ⁺ CD28 ^{null} T cells	32
Subjects and Methods	45
Results	51
Discussion	63
Summary	75
Conclusion	77
Recommendations	78
References	79
Arabic Summary	104

List of Abbreviations

Abbreviation Full term

AAA : Abdominal Aortic Aneurysm

ACAT : Acyl-Coa: Cholesterol O-Acyltransferase

ACE : Angiotensin-Converting-Enzyme

ACE-Is : Angiotensin Converting Enzyme Inhibitors

ACS : Acute Coronary Syndrome

AIDS : Acquired Immune Deficiency Syndrome

AKI : Acute Kidney Injury

AMPK : Adenosine Monophosphate -Activated

Protein Kinase

APCs : Antigen-Presenting Cells

APD : Automated Peritoneal Dialysis

API : Analytical Profile Index

APO : Apolipoprotein

ARBs : Angiotensin Receptor Blockers

ATP : Adenosine Triphosphate

AUC : Area Under The Curve

BCL-6 : B-Cell Lymphoma 6 Protein

BUN : Blood Urea Nitrogen

CAC : Coronary Artery Calcium

CAD : Coronary Artery Disease

CAPD : Continuous Ambulatory Peritoneal Dialysis

CCR : C-C Motif Chemokine Receptor

CETP : Cholesteryl Ester Transfer Protein

CIMT : Carotid Intima Media Thickness

CKD : Chronic Kidney Disease

CK-MB : Creatine Kinase-Muscle/Brain

CMV : Cytomegalovirus

COX2 : Cyclooxygenase-2

CRP : C-Reactive Protein

CRRT : Continuous Renal Replacement Therapy

CT : Computerized Tomography

CTLA-4 : Cytotoxic T-Lymphocyte-Associated

Protein4

CTLs : Cytotoxic T Cells

CV : Cardiovascular

CVD : Cardiovascular Diseases

CVVH : Continuous Veno-Venous Hemofiltration

CVVHD : Continuous Veno-Venous Hemodialysis

CVVHDF : Continous Venovenous Hemodiafiltration

CX3CR : C-X-C Chemokine Receptor

DC : Dendritic Cells

DGAT : Diacyl glycerol acyl transferase

DNA : Deoxyribo nucleic Acid

ECG : Electrocardiogram

eGFR : Estimated Glomerular Filtration Rate

ELISA : Enzyme-linked immunosorbent assay

ERK1/2 : Extracellular Signal-Regulated Kinase 1/2

ESRD : End-Stage Renal Disease

FAs : Fatty Acids

Fas-FasL : First Apoptosis Signal - First Apoptosis

Signal Ligand

FOXP3⁺ : Forkhead Box P3

GATA3 : Gata-Binding Protein 3

HbA1c : Hemoglobin A1c

HD Hemodialysis

HDL : High Density Lipoprotein

HIV : Human Immunodeficiency Virus

HMG-CoA : 3-Hydroxy-3-Methyl-Glutaryl coenzyme A

ICAM-1 : Intercellular Adhesion Molecule-1

IFN : Interferon

IL-2R : Interleukin-2 Receptor

ILs : Interleukins

iNOS : Inducible Nitric Oxide Synthase

IVUS : Intravascular Ultrasound

KDIGO : Kidney Disease: Improving Global

Outcomes

KDOQI : Kidney Disease Outcomes Quality Initiative

KIR2DS2 : Killer Cell Immunoglobulin Like Receptor,

Two Ig Domains and Short Cytoplasmic Tail

2

Lck : Lymphocyte-Specific Protein Tyrosine

Kinase

LDL : Low Density Lipoprotein

LFA-1 : Leukocyte Function-Associated Antigen-1

LPL : Lipoprotein Lipase

MDRD : Modification Of Diet In Renal Disease

MHC : Major Histocompatibility Complex

MMPS : Matrix Metalloproteinases

MRA : Magnetic Resonance Angiography

MRI : Magnetic Resonance Imaging

MS : Multiple Sclerosis

MTHFR : Methylenetetrahydrofolate Reductase

MTTP : Microsomal Triglyceride Transfer Protein

NA : Not Applicable

NFAT : Nuclear Factor Of Activated TCells

NK : Natural Killer

NKG2D : Natural-Killer Group 2, Member D

NO : Nitric Oxide

NOS : Nitric Oxide Synthase

NSAIDs : Non Steroidal Anti- Inflammatory Drugs

PAD : Peripheral Arterial Disease

PBMCs : Blood mononuclear cells

PBS : Phosphate buffered saline

PCSK-9 : Proprotein Convertase Subtilisin/Kexin

Type-9

PD : Peritoneal Dialysis

PE : Phycoerythrin

PKC-8 : Protein Kinase C-8

PLC-Y : Phospholipase C-Gamma

pmp : Patients Per Million

PPARα : Peroxisome Proliferator-Activated Receptor

Alpha

PPARγ : Peroxisome Proliferator-Activated Receptor

Gamma

PV- : Predictive Value Of Negative Test

PV+ : Predictive Value Of Positive Test

RA : Rheumatoid Arthritis

RAAS : Renin-Angiotensin-Aldosterone System

ROC : Receiver-Operating Characteristic

RORγt : Related Orphan Receptor GammaT

RRT : Renal Replacement Therapy

SCUF : Slow Continuous Ultrafiltration

SD : Standard Deviation

SLEDD : Sustained Low Efficiency Daily Dialysis

SLEDD-F : Sustained Low Efficiency Daily Diafiltration

SMCs : Smooth Muscle Cells

sPLA₂ : secreted PhosphoLipaseA2

TCR : T Cell Receptor

TFH : Transcriptional regulation of follicular T-

helper cells

TG : Triglycerides

TGFbeta : Transforming Growth Factor Beta

Th : T helper

TIA : Transient Ischemic Attack

TLRs : Toll-Like Receptors

TNF- α : Tumor Necrosis Factor-Alpha

 T_{reg} : T Regulatory

US : Ultrasound

VCAM-1 : Vascular Cell Adhesion Molecule1

γδ T cells : Gamma Delta T Cells

List of Tables

Table Number	Title	Page		
List of tables of review, subjects and methods				
1	Normal values for CIMT according to age	49		
List of tables of results				
1	Characteristics of the three studied groups	52		
2	CD4 ⁺ CD28 ^{null} T cells frequency in patients and control subjects	54		
3	CD4 ⁺ CD28 ^{null} T cells percentage in the three studied groups	56		
4	Receiver operating characteristic (ROC) curve analysis for discrimination between ESRD patients with or without atherosclerotic changes using CD4 ⁺ CD28 ^{null} T cells count	58		

List of Figures

Figure Number	Title	Page		
List of figures of review, subjects and methods				
1	Pathogenesis of ESRD	6		
2	Complications of end stage renal disease	9		
3	Stages of development of atherosclerosis	19		
4	Complications of atherosclerosis	26		
5	T cell activation and T cell subsets differentiation	34		
6	Phenotypic and functional features of CD4 ⁺ CD28 ^{null} T cells and their CD28 ⁺ counterparts	39		

Figure Number	Title	Page		
List of figures of the results				
1	Mean CD4 ⁺ CD28 ^{null} T cell frequency in participants with or without ESRD	55		
2	Mean CD4 ⁺ CD28 ^{null} T cell percentage in the three studied groups	57		
3	Receiver operating characteristic (ROC) curve analysis for discrimination between ESRD patients with or without atherosclerotic changes using CD4+CD28 ^{null} T cells count	59		
4	Correlation between CD4 ⁺ CD28 ^{null} T cells frequency and CRP	60		
5	Correlation between CIMT and CRP	61		
6	Correlation between CD4 ⁺ CD28 ^{null} T cells frequency and CIMT	62		

Introduction

Chronic kidney disease (CKD) is an increasing health problem, approximately 15% of the adults in industrialized countries suffer from CKD(*Chadban et al.*, 2003).

Patients with ESRD (End Stage Renal Disease), including those on hemodialysis (HD) have increased mortality risk, especially from cardiovascular disease (CVD). This high CV risk is not only explained by conventional risk factors like hypertension, diabetes in addition to dyslipidemia (Chiu and Mehrotra, 2010). Carotid intima- media thickness (CIMT) is a simple, easy beside a cost-effective method for assessing atherosclerosis in addition to cardiovascular risk in adults (Casella et al., 2008).

Inflammatory pathway activation mediates some of the associations between renal dysfunction in addition to CV risk. Inflammatory markers, as C-reactive protein (CRP), interleukin (IL)-6, fibrinogen together with soluble adhesion molecules and cytomegalovirus(CMV)infection may have a role in CV risk in the general population especially in ESRD patients(*Ridker et al,2000; Yilmaz et al, 2005; Rao et al,2006*).

Observations suggested a role for T cells in atherosclerosis predisposition and CVD. CD4⁺ T helper cells can augment atherogenisis(*Gerli et al,2004*).