

FLEXIBLE SCHEDULING OF MEDICAL STAFF AND RESOURCES

By

Fadwa Ahmed Mohammed Abd Alrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Biomedical Engineering and Systems

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

FLEXIBLE SCHEDULING OF MEDICAL STAFF AND RESOURCES

By

Fadwa Ahmed Mohammed Abd Alrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Under the Supervision of

Prof. Dr. Ahmed M. Sayed Badawi

Dr. Muhammad Ali Rushdi

Professor of Biomedical Engineering Biomedical Engineering and Systems Faculty of Engineering, Cairo University Assistant Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

FLEXIBLE SCHEDULING OF MEDICAL STAFF AND RESOURCES

By

Fadwa Ahmed Mohammed Abd Alrahman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Biomedical Engineering and Systems Department

Approved by the Examining Committee

Prof. Dr. Ahmed M. Sayed Badawi

(Thesis Main Advisor)

Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Manal Abdel Wahed Abdel Fatah

(Internal Examiner)

Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Mohammed Ibrahim Aladawi

(External Examiner)

Professor, Faculty of Engineering, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Fadwa Ahmed Mohammed Abd Alrhamn

Date of Birth: 25/9 /1989 **Nationality:** Egyptian

E.mail: engfadwaahmed89@gmail.com

Phone: 01064447561

Address: Abo Kabeer, Sharkia

Registration Date: 1./3/2014 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Biomedical Engineering and systems

Supervisors:

Prof. Dr. Ahmed M. Sayed Badawi

Dr. Muhammad Ali Rushdi

Examiners:

Prof. Dr. Mohammed Ibrahim Aladawi (External examiner)
-Professor, Faculty of Engineering, Helwan Unversity

Prof. Dr. Manal Abdel Wahed Abdel Fatah (Internal examiner) Prof. Dr. Ahmed M. Sayed Badawi (Thesis main advisor)

Title of Thesis:

Flexible scheduling of Medical Staff and resources

Key Words:

Scheduling; Medical Resources; Multi Objective Optimization

Summary:

the last decades, many countries have been looking for systematic ways to For reduce the national healthcare expenditure. As surgeries costs a lot, all hospital administrators aim to deliver the best healthcare with the available limited resources and with the lowest costs. Planning and scheduling the surgeries and medical staff have become a major goal of hospital administrators to optimize the management and utilization of medical resources. In this work, mixed integer-linear programming models have been investigated for the scheduling of listed surgeries at different specialties with two priority grades, scheduling anesthetists over flexible shifts with flexible starting times and shift lengths. We investigated single and multi-objective formulations with criteria of cost, physician's preferences, or their combinations with weighting parameters. We can schedule all the surgeries with priority grade of 1 and more than 57% of the surgeries of a priority grade of 2.We decreased number of anesthetists, achieving more than 43% of anesthetists' preferences for their shift starting times and more than 57% for their preferences for the surgeries.

Acknowledgments

First and foremost, I thank **ALLAH**, the most gracious, the ever merciful for helping me finishing this work.

I want to thank all those, who helped me by their knowledge and experience. I will always appreciate their efforts. I would like to offer my sincere thanks to my supervisors **Prof. Dr. Ahmed Badawi** and **Dr. Muhammmed Rushdi.** I owe them for valuable supervision, continuous encouragement, useful suggestions, and active help during this work. My sincere appreciation and gratitude to my family for their help and patience during the preparation of this work, especially for my mother and my father wish that you were here (Allah bless your own soul).

Dedication

This thesis is dedicated to:

- The sake of Allah, my Creator and my Master.
- My great teacher and messenger, Mohammed (May Allah bless and grant him), who taught us the purpose of life.
- My supervisors Prof. Dr. Ahmed Badawi and Dr. Muhammmed Rushdi.
- My family and my parents.

Table of Contents

ACI	KNOWLEDGEMENT	I
DED	ICATION	II
TABI	LE OF CONTENTS	III
LIST	OF TABLES	X
LIST	OF FIGURES	XII
	OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE	
ABS	TRACT	XI
СНА	PTER 1 : INTRODUCTION	13
1.1	HEALTHCARE MANAGEMENT PROBLEMS	13
	1.1.1 WORLDWIDE HEALTHCARE SPENDING	13
	1.1.2 HEALTHCARE IN EGYPT	15
	1.1.3 INCREASING NEEDS FOR HEALTHCARE RESOURCES AND	
MANA	AGEMENT	16
1.2.	SCHEDULING APPROACHES FOR HEALTHCARE MANAGEMENT	17
1.3.	THESIS OBJECTIVE	18
1.3.	ORGANIZATION OF THE THESIS	20
СНА	PTER 2 : LITERATURE REVIEW	21
2.1.	Introduction	15
2.2.	RELATED WORK	15
	2.2.1 Nurse Rostering Problem	15
	2.2.2 MEDICAL STAFF SCHEDULING PROBLEM	16
	2.2.3 RESIDENT AND INTERN SCHEDULING PROBLEM	17
2.3.	Summary	18
СНА	PTER 3 : METHODS AND MATERIALS	21
3.1. T	THE OPTIMIZATION PROBLEM	21
3.2. N	MIXED INTEGER LINEAR PROGRAMMING	21
3.3. N	MILP SOLUTION TECHNIQUES	21
3	3.3.1Simplex Method	21
3	3.3.2 Branch and bound (B&B) Method	25
3	3.3.3 CUTTING-PLANE METHOD	25
3.4 N	ATAB INTLINPROG PACKAGE	26
3.4 P	PROBLEM STATEMENT	29
3.5 S	TUDY GOALS	29
3.6 F	RAMEWORK OF THE PROBLEM	31
3.7 Tı	HE PROBLEM DESCRIPTION	34
3.	.7.1 OPERATING ROOM ALLOCATION: MOTIVATION	34
3	3.7.2 OPERATING ROOM ALLOCATION: PROBLEM FORMULATION	34

3.7.2.1 MODEL DESCRIPTION	35
3.7.2.2 MODEL PARAMETERS	35
3.7.2.3 MODEL DECISION VARIABLES	35
3.7.2.4 MODEL OBJECTIVE FUNCTION	36
3.7.2.5 MODEL CONSTRAINTS	37
3.7.3 MODEL OUTPUT	40
3.7.4 UNEXPECTED EXTENSIONS IN OPERATION DURATION	40
3.8 MEDICAL STAFF SCEDUKING: MOTIVATION	41
3.9 MEDICAL STAFF SCHEDULING: PROBLEM FORMULATION	41
3.9.1 MODEL DESCRIPTION	41
3.9.2 Model Parameters	43
3.9.3 MODEL DECISION VARIABLES	44
3.9.4 MODEL MULTI OBJECTIVE FUNCTION	45
3.9.5 MODEL CONSTRAINTS	46
3.10 MEDICAL STAFF ASSIGNMENT TO OPERATING ROOMS: MOTIVATION	55
3.11 MEDICAL STAFF ASSIGNMENT TO OPERATING ROOMS: PROBLEM FORMULATION	N .55
3.11.1 MODEL DESCRIPTION	55
3.11.2 Model Parameters	56
3.11.3 MODEL DECISION VARIABLES	57
3.11.4 MODEL OBJECTIVE FUNCTION	57
3.11.5 MODEL CONSTRAINTS	58
CHAPTER 4: RESULTS AND DISCUSSION	60
4.1 Experemental Setup	60
4.1.1 OPERATING ROOM ALLOCATION: EXPEREMENTAL SETUP,,	60
4.1.2 STAFF SCHEDULING: EXPEREMENTAL SETUP	61
4.1.2.1 THE 3- PHASE MODEL: PROFILE DEMAND OF PHYSICIAN	61
4.1.2.2 MEDICAL STAFF SCHEDULING: PROFILE DEMAND	.63
4.2 OPERATING ROOM ALLOCATION	64
4.2.1 Results	64
4.2.2 DISCUSSION	69
4.3 MEDICAL STAFF SCHEDULING	70
4.3.1 Results	70
4.3.1.1 3-Phase Room And Staff Scheduling Model	70
4.3.1.2 STAFF SCHEDULING MODEL	75
4.3.2 DISCUSSION	93
4.3.2.1 THE EFFECT OF PHYSICIAN PREFERENCES	93
4.3.2.2 THE EFFECT OF THE MAXIMUM SHIFT LENGTH	94
4.3.2.3 THE EFFECT OF THE TIME WINDOW	94
4.3.2.4 THE EFFECT OF THE OPTIMIZATION ALGORITHMS	94
4.4 ASSIGNMENT OF STAFF TO OPERATING ROOMS	95
4.4.1 Results	95
4.4.2 DISCUSSION	98
CHAPTER 5: CONCLUSIONS AND FUTURE WORK	100
Decembrates	102

List of Tables

Table 3.1 Relation between primal and dual simplex methods Table 3.2 Operating room Allocation: Definitions of model parameters	Table 1.1 Healthcare Spending in Egypt	.10
Table 3.3 Operating room Allocation: Definitions of model decision variables		
Table 3.4 Medical staff scheduling: Definitions of model parameters	Table 3.2 Operating room Allocation: Definitions of model parameters	.35
Table 3.5 Medical staff scheduling: Definitions of model decisions variables	Table 3.3 Operating room Allocation: Definitions of model decision variables	.36
Table 3.6 Staff Assignment to operating rooms: Definitions of model parameters	Table 3.4 Medical staff scheduling: Definitions of model parameters	.43
Table 4.1 Allocation of operating rooms: Values of the model parameters	Table 3.5 Medical staff scheduling: Definitions of model decisions variables	.44
Table 4.2 Allocation of operating rooms: The number of waiting operations of priority grade 1 for each operating rooms	Table 3.6 Staff Assignment to operating rooms: Definitions of model parameters	.57
grade 1 for each operating rooms	Table 4.1 Allocation of operating rooms: Values of the model parameters	.60
Table 4.3 Allocation of operating rooms: The number of waiting list of operations of priority grade 2 for each operating rooms	Table 4.2 Allocation of operating rooms: The number of waiting operations of priorit	ty
priority grade 2 for each operating rooms	grade 1 for each operating rooms	.61
Table 4.4 Medical staff scheduling: Values of the model parameters	Table 4.3 Allocation of operating rooms: The number of waiting list of operations of	
Table 4.5 Results of operating room allocation: Operating room rate of occupancy65 Table 4.6 Results of operating room allocation: Number of operations spilled to the next week	priority grade 2 for each operating rooms	.61
Table 4.6 Results of operating room allocation: Number of operations spilled to the next week		
next week	Table 4.5 Results of operating room allocation: Operating room rate of occupancy	.65
Table 4.7 Results of the 3-phase model: Output of the multi-objective cost-preference model	Table 4.6 Results of operating room allocation: Number of operations spilled to the	
model	next week	.66
Table 4.8 Results of the 3-phase model: Effect of the time window on the output of the 3-phase model with different values for the criteria coefficients w_I and w_2	Table 4.7 Results of the 3-phase model: Output of the multi-objective cost-preference	e
3- phase model with different values for the criteria coefficients w_I and w_2	model	71
Table 4.9 Results of the 3-phase model: Effect of the time window on the cost objective function	Table 4.8 Results of the 3-phase model: Effect of the time window on the output of the	he
objective function	3- phase model with different values for the criteria coefficients w_1 and w_2	2
Table 4.10 Results of the 3-phase model: Effect of the maximum shift length on the output of the 3-phase model	Table 4.9 Results of the 3-phase model: Effect of the time window on the cost	
Table 4.10 Results of the 3-phase model: Effect of the maximum shift length on the output of the 3-phase model	objective function	.73
Table 4.11 Results of the 3-phase model: The on-call service schedule		
Table 4.12 Results of the medical staff scheduling model for Week 1: Output of the multi-objective function	output of the 3-phase model	74
Table 4.12 Results of the medical staff scheduling model for Week 1: Output of the multi-objective function	Table 4.11 Results of the 3-phase model: The on-call service schedule	.74
Table 4.13 Results of the medical staff scheduling model for Week 2: Output of the multi-objective function		
multi-objective function	multi-objective function	.79
Table 4.14 Results of the medical staff scheduling model for Week1 & Week 2: The schedule of the on-call service	Table 4.13 Results of the medical staff scheduling model for Week 2: Output of the	
Table 4.15 Results of the medical staff scheduling model: Payment details for each anesthetist	multi-objective function.	.79
Table 4.15 Results of the medical staff scheduling model: Payment details for each anesthetist	Table 4.14 Results of the medical staff scheduling model for Week1 & Week 2: The	
anesthetist	schedule of the on-call service	.80
Table 4.16 Results of the medical staff scheduling model: Effect of the time window on the output with the cost objective only	Table 4.15 Results of the medical staff scheduling model: Payment details for each	
the output with the cost objective only	anesthetist	.81
the output with the cost objective only	Table 4.16 Results of the medical staff scheduling model: Effect of the time window	on
Table 4.17 Results of the medical staff scheduling model for Week 1: Effect of the time window on the multi-objective function with the different weights w_I and w_2 for	the output with the cost objective only	.82
time window on the multi-objective function with the different weights w_I and w_2 for		
	the cost and preference criteria, respectively	

Table 4.18 Results of the medical staff scheduling model for Week 2: Effect of the
time window on the multi-objective function with the different weights w_1 and w_2 for the
cost and preference criteria, respectively83
Table 4.19 Results of the medical staff scheduling model: Effect of the number of
anesthetists on the output for the cost objective function only83
Table 4.20 Results of the medical staff scheduling model for Week 1: Effect of the
maximum shift length on the multi-objective function with the different weights
<i>w</i> ₁ and <i>w</i> ₂ for the cost and preference criteria, respectively85
Table 4.21 Results of the medical staff scheduling model for Week 2: Effect of the
maximum shift length on the multi-objective function with the different weights
<i>w</i> ₁ and <i>w</i> ₂ for the cost and preference criteria, respectively
Table 4.22 Results of the medical staff scheduling model for Week 1 & Week 2: Effect
of using different types of Intel performance primitive reprocess (IPP) with different
number of physicians87
Table 4.23 Results of the medical staff scheduling model for Week 1: Effect of using
different heuristic types with different number of physicians
Table 4.24 Results of the medical staff scheduling model for Week 2: Effect of using
different heuristic types with different number of physicians88
Table 4.25 Results of the medical staff scheduling model for Week 1: Effect of using
different cutting-plane types with different number of physicians89
Table 4.26 Results of the medical staff scheduling model for Week2: Effect of using
different cutting-plane types with different number of physicians90
Table 4.27 Results of the medical staff scheduling model for Week 1: Effect of using
different simplex algorithm types with different number of physicians91
Table 4.28 Results of the medical staff scheduling model for Week 2: Effect of using
different simplex algorithm types with different number of physicians91
Table 4.29 Results of the medical staff scheduling model for Week 1: Effect of using
different branching rules with different number of physicians
Table 4.30 Results of the medical staff scheduling model for Week 2: Effect of using
different branching rules with different number of physicians
Table 4.31 Results of staff assignment to the operating rooms: The efficiency of
matching the preferences of anesthetists98

List of Figures

Figure 1.1 Healthcare costs per capita in 2011
Figure 1.2 Healthcare costs per capita over years in the USA
Figure 1.3 Details of healthcare spending in the USA
Figure 1.4 Healthcare spending as a percentage of the gross domestic product (GDP) in
Egypt
Figure 1.5 Increase of world population (1950 -2050)
Figure 1.6 Figure 1.6 Increase of population ager than 15 for male, female and the both
in the US in 1975-2015
of each phase are listed on the right
of each phase are listed on the right
Figure 3.1 Simplex method
Figure 3.2 Branch and bound method
Figure 3.3 General scheduling framework
Figure 3.4 Example for operation start, end and duration at operating room 140
Figure 3.5 Relation between the decision variables of the medical staff scheduling
problem
Figure 3.6 Medical staff scheduling: An anesthetist shift
example
Figure 4.1.1 Medical staff scheduling model for Week 1: Profile demand of KRI for
number of anesthetists
Figure 4.2 Medical staff scheduling model for Week 2: Profile demand of KRI for
number of anesthetists
Figure 4.3 Results of the operating room allocation: The schedule of operations at the
three operating rooms on Monday
Figure 4.4 Results of the operating room allocation: The schedule of operations at the
three operating rooms on Tuesday
Figure 4.5 Results of the operating room allocation: The schedule of operations at the
three operating rooms on Wednesday
Figure 4.6 Results of the operating room allocation: The schedule of operations at the
three operating rooms on Thursday
Figure 4.7 Results of the operating room allocation: The schedule of operations at the
three operating rooms on Friday
Figure 4.8 Results of the operating room allocation: The demand number of
anesthetists at each time interval
Figure 4.9 Results of the 3-phase model: The available physicians with the schedule of
rooms
Figure 4.10 Results of the medical staff scheduling model for Week 2: The objective
function versus the solution's iterations with $w_1=0.2$, $w_2=0.8$

Figure 4.11 Results of staff assignment to	operating	rooms:	The	schedule	for	the		
surgeries with their anesthetists on Monday					· • • • • • • •	96		
Figure 4.12 Results of staff assignment to	operating	rooms:	The	schedule	for	the		
surgeries with their anesthetists on Tuesday					· • • • • • • •	96		
Figure 4.13 Results of staff assignment to	operating	rooms:	The	schedule	for	the		
surgeries with their anesthetists on Wednesday97								
Figure 4.14 Results of staff assignment to	operating	rooms:	The	schedule	for	the		
surgeries with their anesthetists on Thursday.						97		
Figure 4.15 Results of staff assignment to	operating	rooms:	The	schedule	for	the		
surgeries with their anesthetists on Friday						98		

List of Symbols, Abbreviations, and Nomenclature

GDP Gross Domestic Product; Unit of total income of country

PPP Purchasing power parity

USD United States dollars

BM Blocking model

B&B Branch-and-bound

LP Linear programming

MATLAB MATrix LABoratory, www.mathworks.com

MILP Mixed integer linear programming

MIP Mixed integer programming

KRI Germany – Krankenhaus

IPP Intel performance primitive

Abstract

National health spending around the world varies between countries: 17 % in the USA and around 10 % in most large European countries and about 5% in Egypt. Hospital budgets account for almost half of all expenditures in most health systems. Surgeries cost more than 40% of total expenditures of a hospital [1].

In the last decades, there have been a lot of efforts in the healthcare field to decrease costs without affecting the performance and quality of healthcare services. In particular, there is an increasing need of good scheduling schemes for medical staff and medical resources to minimize the cost of medical staff and maximize the usage of the limited resources. This is why optimal scheduling of medical personnel (including nurses and physicians) has been receiving growing attention.

In this thesis, we are interested in surgery scheduling and physician scheduling. In our model, we schedule a time horizon (e.g. a week) by dividing this time horizon into equal time intervals. Our model consists of three phases. In the first phase, we schedule the surgeries at different specialties with two priority grades over the predefined work hours for operating rooms for each specialty. In the second phase, we schedule physicians under certain constraints and rules to cover the variable demand of physicians at each time interval over shifts which are flexible in their starting times and lengths (number of time intervals). We have multiple objectives: a cost objective and a preference objective. Here, we are interested in the preferences of physicians to their starting time for shifts without contradicting hospital rules. In the third phase, we assign the available physicians at each time interval from the second phase to the scheduled surgeries of the first phase with the preferences of the physicians to specific surgeries as the objective function.

Our model can reduce the waiting lists to 40 % and perform all the urgent operations. We can cover all the demanded physicians at all the time intervals without any overtime or external physicians. We can achieve the preferences of the physicians for their shift starting times on all days if the preferences don't contradict with the rules. If there is a contradiction, the model reaches to the maximum permitted time that is closest to the physician preferences. We found that we can reduce the number of contracted and external physicians leading to minimum hospital costs.

The efficiency of achieving the preferences of anesthetists for their surgeries at specific operating rooms with average preference satisfaction rate is higher than 50%.