



# SOLIDIFICATION SEQUENCE AND CARBIDE PRECIPITATION IN HIGH SILICON MOLYBDENUM DUCTILE IRON (SIMO)

By

#### Mervat Youssef Abd El-Hamid Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

# SOLIDIFICATION SEQUENCE AND CARBIDE PRECIPITATION IN HIGH SILICON MOLYBDENUM DUCTILE IRON (SIMO)

By

#### Mervat Youssef Abd El-Hamid Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Metallurgical Engineering** 

Under the Supervision of

#### Prof. Dr. Abdel-Hamid Ahmed Hussein

Prof. Dr. Adel Abdel Moneim Saleh Nofal

Professor of Metallurgy
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Cairo University

Professor of Metal Casting Foundry Technology Laboratory Central Metallurgical for R&D Institute (CMRDI)

#### Prof. Dr. Elsayed Mahmoud Elbanna

Professor of Metallurgy Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University

# SOLIDIFICATION SEQUENCE AND CARBIDE PRECIPITATION IN HIGH SILICON MOLYBDENUM DUCTILE IRON (SIMO)

By

#### Mervat Youssef Abd El-Hamid Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

ir

**Metallurgical Engineering** 

Approved by the

**Examining Committee:** 

**Prof. Dr: Abdel-Hamid Ahmed Hussien**, Thesis Main Advisor

Prof. Dr.: Adel Abdel-Moniem Saleh Nofal, Advisor

Central Metallurgical R&D Institute (CMRDI)

**Prof. Dr: Elsayed Mahmoud Elbanna**, Advisor

**Prof. Dr: Mohammed Mamdouh Ibrahim**, Internal Examiner

**Prof. Dr.: Mohamed Abdel Wahab Waly**, External Examiner

Central Metallurgical R&D Institute (CMRDI)

Engineer's Name: Mervat Youssef Abd El-Hamid Ahmed

**Date of Birth:** 29 / 7 / 1992 **Nationality:** Egyptian

E-mail: usf.mervat@gmail.com

**Phone:** 01000632852

**Address:** 10 Mohamed kamel, Awlad Ouf,

El Haram, Giza

**Registration Date:** 1 / 10 / 2014 **Awarding Date:** / / 2018

**Degree:** Master of Science

**Department:** Mining, Petroleum and Metallurgy Engineering

**Supervisors:** 

Prof. Dr. Abdel-Hamid Ahmed Hussien, (Thesis Main Advisor) Prof. Dr. Adel Abdel Moniem Saleh Nofal, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Elsayed Mahmoud Elbanna, (Advisor)

**Examiners:** 

Prof. Dr.: Mohamed Abdel Wahab Waly, (External Examiner)

Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Mohammed Mamdouh Ibrahim, (Internal Examiner) Prof. Dr. Abdel-Hamid Ahmed Hussien, (Thesis Main Advisor) Prof. Dr. Adel Abdel Moniem Saleh Nofal, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Elsayed Mahmoud Elbanna, (Advisor)

#### **Title of Thesis:**

## SOLIDIFICATION SEQUENCE AND CARBIDE PRECIPITATION IN HIGH SILICON MOLYBDENUM DUCTILE IRON (SIMO)

#### **Key Words:**

SiMo; Thin-wall; carbides; solidification sequence; Thermal stability.

#### **Summary:**

When SiMo was introduced to be used for automotive applications, there were limitations regarding increasing service temperature.

The first point of this research aims at producing SiMo alloys and studies the effect of alloying element, inoculation type as well as influence of cooling rate on microstructure. The second point designed to study the phase transformation during solidification at different conditions. Finally, point three designed to measure the stability of the phases and determine the thermal expansion coefficient and  $A_1$  temperature.



## **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Mervat Youssef Abd El-hamid Ahmed Date: 8/10/2018.

Signature:

### Acknowledgments

I would like to express my deep regards and sincere gratitude to Prof. Dr. Abdel-Hamid A. Hussein, Faculty of Engineering, Cairo University for his care, kind supervision, encouragement, constant efforts, and valuable stimulating guidance and fruitful discussion throughout this study.

I offer my profuse thanks with humble reverence to Prof. Adel Nofal, Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for his invaluable guidance and support. He was a beacon light, whose constant efforts and encouragement proved to be a parallel stimulus in completing this research successfully.

I would like to thank Prof. Dr. El-Sayed M. El-Banna, Faculty of Engineering, Cairo University for his supervision and support.

I am grateful to Prof. Dr. Mervat Ibrahim and Prof. Dr. Mohamed Morad, Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for their support and co-operation in the hours of need and for their expert.

Last but not least, special thanks are due to Prof. Dr Mohamed Soliman, Eng. Mostafa Othman, Eng. Mohamed Hafez, Eng. Abdel Rahman Abdel Motagaly, and the staff of Foundry Technology Laboratory of CMRDI and particularly metallographic, melting, workshop staff for their sincere help.

This work is fully supported by The Science and Technology Department Fund (STDF) under the frame work of the Korean project titled "Thin-Wall Iron Castings for Automotive Applications".

## **Table of Contents**

| DISCLAIMER                                                                                  | I   |
|---------------------------------------------------------------------------------------------|-----|
| ACKNOWLEDGMENTS                                                                             | II  |
| TABLE OF CONTENTS                                                                           | III |
| LIST OF TABLES                                                                              | V   |
| LIST OF FIGURES                                                                             | VI  |
| NOMENCLATURE                                                                                |     |
| ABSTRACT                                                                                    |     |
| CHAPTER 1 : INTRODUCTION                                                                    |     |
| CHAPTER 2 : LITERATURE REVIEW                                                               |     |
| 2.1. INTRODUCTION                                                                           |     |
| 2.2. CHALLENGES AND CHARACTERISTIC PROPERTIES REQUI                                         |     |
| 2.3. HIGH TEMPERATURE RESISTANT ALLOYS                                                      |     |
| 2.4. METALLURGY OF THIN-WALL DUCTILE IRON (TWDI)                                            |     |
| 2.4.1. SOLIDIFICATION STAGES OF TWDI                                                        | 5   |
| 2.5. THIN-WALL SILICON MOLYBDENUM DUCTILE IRON (TW-2.5.1. CHARACTERISTIC PROPERTIES OF SIMO |     |
| 2.5.1. CHARACTERISTIC PROPERTIES OF SIMO                                                    |     |
| 2.5.2. SIMO GRADES AND STANDARD SPECIFICATIONS                                              |     |
| 2.5.3.1. EFFECT OF ALLOYING ELEMENTS                                                        |     |
| 2.5.3.2. EFFECT OF COOLING RATE                                                             |     |
| 2.5.4. MICROSTRUCTURE CONSTITUENTS OF SIMO ALLOY                                            |     |
| 2.5.5. HEAT TREATMENT AND THERMAL STABILITY OF SIMO                                         |     |
| 2.5.6. COEFFICIENT OF THERMAL EXPANSION                                                     | 12  |
| 2.5.7. MECHANICAL PROPERTIES                                                                | 13  |
| CHAPTER 3 : EXPERIMENTAL WORK                                                               | 15  |
| 3.1. RESEARCH OBJECTIVES                                                                    | 15  |
| 3.2. PREPARATION OF CASTINGS AND ALLOYING                                                   | 15  |
| 3.2.1. MELTING                                                                              | 15  |
| 3.2.2. MOLD MAKING                                                                          | 16  |
| 3.2.3. PATTERN DESIGN                                                                       | 16  |
| 3.3. CHARACTERIZATION OF SIMO                                                               | 17  |
| 3.3.1. CHEMICAL COMPOSITION ANALYSIS                                                        | 17  |
| 3.3.2. SOLIDIFICATION STUDIES                                                               | 17  |
| 2.5.3.1. THERMO-CALC CALCULATIONS                                                           | 17  |
| 2.5.3.2. DIFFERENTIAL SCANNING CALORIMETRY (DSC) ANALYSIS                                   |     |
| 3.3.3. METALLOGRAPHIC ANALYSIS                                                              |     |
| 3.3.4. THERMAL STABILITY EXPERIMENTS                                                        | 18  |
| CHAPTER 4: RESULTS AND DISCUSSION                                                           | 19  |
| 4.1. CHARACTERIZATION OF SIMO                                                               | 19  |
| 4.1.1. CHEMICAL COMPOSITION ANALYSIS                                                        | 19  |
| 4.1.2. SOLIDIFICATION STUDIES                                                               | 19  |
| 4 1 2 1 THERMO-CALC CALCUL ATIONS                                                           | 10  |

| 4.1.2.2.  | DIFFERENTIA       | L SCANNING CALORIME | TRY (DSC) ANALYSIS   | 23 |
|-----------|-------------------|---------------------|----------------------|----|
| 4.1.3. ME | ETALLOGR <i>A</i> | APHIC ANALYSIS      |                      | 32 |
|           |                   |                     | ULANT TYPE AND ALLO  |    |
|           |                   |                     |                      |    |
| 4.1.3.2.  |                   |                     | OF THE DEVELOPED SIN |    |
| 4.2. HEAT | TREATM            | ENT                 | •••••                | 60 |
|           |                   |                     | MENSIONAL STA        |    |
|           |                   |                     |                      |    |
|           |                   |                     | •••••                |    |
|           |                   |                     |                      |    |

## **List of Tables**

| Table 2.1: Chemical composition of SiMo ductile cast irons, given in wt% (Fe bal.)6    |
|----------------------------------------------------------------------------------------|
| Table 3.1: The chemical composition of the three inoculants used17                     |
| Table 3.2: The planned chemical composition of TW-Si-Mo plates17                       |
| Table 4.1: The final chemical composition of of TW-Si-Mo plates19                      |
| Table 4.2: The effect of inoculant type and alloying elements on the amount percent of |
| the phases in room temperature and transformation temperatures22                       |
| Table 4.3: Comparison between the amount of phases in alloyed and alloyed SiMo23       |
| Table 4.4: SiMo ductile iron transformation peaks in cooling and heating27             |
| Table 4.5: Alloyed SiMo ductile iron transformation peaks in cooling and heating30     |
| Table 4.6: Transformation temperatures revealed from the Thermo-Calc phase diagram     |
| vs those predicted from the peaks of the DSC in SiMo31                                 |
| Table 4.7: Transformation temperatures revealed from the Thermo-Calc phase diagram     |
| vs those predicted from the peaks of the DSC in alloyed SiMo31                         |
| Table 4.8: Microstructure calculations (EN ISO 945-1): Spherodial Number, Shape and    |
| Size Index of Graphite for unetched samples32                                          |
|                                                                                        |

## **List of Figures**

| Figure 2.1: 3D model of exhaust system of 6-cylinder diesel engine2                               |
|---------------------------------------------------------------------------------------------------|
| Figure 2.2: Properties required for high efficient exhaust system parts                           |
| Figure 2.3: The relationship between exhaust materials selection and operation                    |
| conditions3                                                                                       |
| Figure 2.4: Typical microstructure of SG iron4                                                    |
| Figure 2.5: Simulated undercooling below the extrapolated lines for austenite5                    |
| Figure 2.6: Modelling with including and excluding the possibility of austenite                   |
| dendrites nucleation5                                                                             |
| Figure 2.7: Effect of silicon content on: (a) the critical temperature, (b) oxidation in air      |
| at 650°C (c) room temperature mechanical properties of ferritic Ductile Iron                      |
| Figure 2.8: Chemistry map for high-Si SiMo as related to regarding C, Si, and CE.                 |
| Prediction of microstructure and shrinkage is also plotted8                                       |
| Figure 2.9: Casting experiments and modeling of shrinkage for high-Si SiMo of 4.5%                |
| Si. The C content is $3.35\%$ , i.e. $CE = 4.85$ for the top row of pictures, while the C         |
| content is 3.15%, i.e. CE = 4.65 for the bottom pictures. The pictures in the left, middle,       |
| and right columns represent the flange sections of manifolds, sections of AFS blind               |
| risers, and solidification modeling respectively.                                                 |
| Figure 2.10: Etched (Nital 2%) microstructure of SiMo, showing graphite nodules                   |
| dispersed in ferrite (white) with carbides of M <sub>6</sub> C-type (M=Fe, Mo, Si), formed in the |
| intercellular regions                                                                             |
| Figure 2.11: Micrograph images showing the etched (Nital 2%) microstructure of                    |
| SiMo with additions of a) none, b) 0.5wt% Cr, c) 1wt% Cr, d) 0.3wt% Cr, 1wt% Ni, e)               |
| 0.6wt% Cr, 1wt% Ni and f) 1wt% Ni. Scale bars indicate 200μm                                      |
| Figure 2.12: Phase diagrams calculated by Thermo-Calc for SiMo with additions of a)               |
| Cr , b) Ni11                                                                                      |
| Figure 2.13: Intercellular region of SiMoshowing a) micrograph image of M <sub>6</sub> C          |
| carbides and spheroidized pearlite in a ferritic matrix and b) SEM image of an M <sub>6</sub> C   |
| carbide                                                                                           |
| Figure 2.14: Intercellular region of SiMowith additions of 0.6Cr and 1Ni showing a)               |
| micrograph image of M <sub>6</sub> C and Cr-rich carbides and spheroidized pearlite in a ferritic |
| matrix and b) SEM image of a mixed carbide of M <sub>6</sub> C and a Cr-rich phase11              |
| Figure 2.15: Coefficient of thermal expansion alpha versus temperature measured from              |
| dilatometer testing at a heating rate of 5 o C/min: (a) SiMo of 4% Si and (b) high-Si             |
| SiMo of 4.9% Si. The critical temperature A1 can be determined from the curves12                  |
| Figure 2.16: Silicon content versus room temperature properties: (a) tensile UTS and              |
| 0.2% offset YS, (b) tensile elongation E%, and (c) Brinell hardness HBW. Mo content               |
| varied from 0.6% to 0.9%. Each point represents three tests at least                              |
| Figure 2.17: Silicon content versus the hot tensile UTS tested at different temperatures.         |
| Each point represents the average of three tests at least. The points are connected just          |
| for showing the tendency to change. Mo content is 0.75%                                           |
| Figure 2.18: Room temperature tensile results of as-cast, subcritically annealed, and full        |
| annealed specimens of high-Si SiMo (4.65% Si and 0.75% Mo)                                        |
| Figure 2.19: Absorbed energy of non-notched Charpy testing for 4.65% Si and 5.01%                 |
| Si SiMo samples with different treatment: as-cast, subcritical annealing, and full                |
| annealing respectively. The sample dimension is $10\times10\times55$ mm14                         |

| Figure 3.1: a) A typical vortex unit is made up for major cast iron and steel             |
|-------------------------------------------------------------------------------------------|
| components: (A) refractory, (B) additives hopper, (C) interchangeable calibrated orifice  |
| and (D) shut off slide, b) Vortex unit available at CMRDI                                 |
| Figure 3.2: Production of investment molds                                                |
| Figure 3.3: The stepped pattern used for the preparation of casting molds                 |
| Figure 3.4: Quenching LINSIES L87 dilatometer available at CMRDI                          |
| Figure 4.1: Thermo-Calc phase diagram (a) SiMo (A1 at 1170°C), (b)Alloyed SiMo            |
| 1%Cr, 0.7% V, 0.6% Ni (A1 at 1160°C)                                                      |
| Figure 4.2: Mass percent of the components in carbides (a) M6C, (b) M7C3 where            |
| M=Fe, Mo, Si, Mn                                                                          |
| Figure 4.3: Volume fraction of all phases in SiMo with three different inoculants21       |
| Figure 4.4: Volume fraction of all phases in Alloyed SiMo (1%Cr, 0.7%V, 0.6% Ni)          |
| with three different inoculants                                                           |
|                                                                                           |
| Figure 4.5: Cooling DSC curve of Si-Mo Ductile Iron (Green Sand – Inc. 2)                 |
| Figure 4.6: Cooling DSC curve of Alloyed Si-Mo Ductile Iron – Green Sand – Inc.2          |
| inoculation                                                                               |
| Figure 4.7: N.C vs thickness for unalloyed samples                                        |
| Figure 4.8: N.C vs thickness for unalloyed samples                                        |
| Figure 4.9: Microstructures of SiMo casting of 3, 6 and 9mm cast in greensand molds-      |
| Inc.246                                                                                   |
| Figure 4.10: Composition of different eutectic carbides in SiMo 3mm castings, Inc.2.47    |
| Figure 4.11: Nucleation of intercellular precipitates on eutectic carbides at low- and    |
| high-magnifications                                                                       |
| Figure 4.12: Microstructure of 9-mm thick plate cast in green sand mold48                 |
| Figure 4.13: Intercellular eutectic and fine precipitates in the slowly cooled 9-mm thick |
| investment mold plates49                                                                  |
| Figure 4.14: (a) lower Mo-contents in the rod-like precipitate as compared to the         |
| eutectic carbides, (b) fine carbides precipitation within the ferrite grains49            |
| Figure 4.15: Formation of chunky graphite embedded in the intercellular regions 50        |
| Figure 4.16: SEM of SiMo under different cooling rates (a) high cooling rate, 3-mm        |
| thick plates in greensand, (b) slow cooling rate, 9-mm thick plates in investment molds   |
| 50                                                                                        |
| Figure 4.17: The optical microstructure of alloyed SiMo samples a) 3mm, b) 6mm and        |
| c) 9mm                                                                                    |
| Figure 4.18: Optical micrograph, SEM, and EDS analysis for SiMO-Cr-Ni-V, Green            |
| Sand, 3mm, Inc. 1(4G-3mm)                                                                 |
| Figure 4.19: Optical and SEM Microstructure for SiMO-Cr-Ni-V, Green Sand, 3mm,            |
| Inc. 2 (5G-3)                                                                             |
| Figure 4.20: Optical and SEM Microstructure for SiMO-Cr-Ni-V, Investment Mold,            |
| 3mm, Inc. 1 (4I-3mm)                                                                      |
| Figure 4.21: Optical and SEM Microstructure for SiMO-Cr-Ni-V, Investment Mold,            |
| 9mm, Inc. 1 (4I-9mm)                                                                      |
| Figure 4.22: Optical and SEM Microstructure for SiMO-Cr-Ni-V, Investment Mold,            |
| 9mm, Inc.2 (5I-9mm)                                                                       |
| Figure 4.23: Optical microstructure of high-silicon molybdenum ductile iron, 3mm          |
| /Unalloyed /green Sand, (A) As-cast (B) Annealing 1080°C (C) Normalizing 1080°C.61        |
| Figure 4.24: Optical microstructure of high-silicon molybdenum ductile iron, 9mm          |
| /Unalloyed /Investment, (A) As-cast (B) Annealing 1080°C (C) Normalizing 1080°C.61        |
| Figure 4.25: Change in length vs temperature of unalloyed and alloyed SiMo irons of 3     |
| mm thickness                                                                              |
| 11111 UIICKIICSS                                                                          |

| Figure 4.26: Change in length vs time of unalloyed and alloyed SiMo irons64          |
|--------------------------------------------------------------------------------------|
| Figure 4.27: Optical microstructure of high-silicon molybdenum ductile iron, As cast |
| /Unalloyed /Greensand, (A) 3mm (B) 6mm (C) 9mm65                                     |
| Figure 4.28: Optical microstructure of high-silicon molybdenum ductile iron, As Cast |
| /Unalloyed /Investment, (A) 3mm (B) 6mm (C) 9mm65                                    |
| Figure 4.29: Optical microstructure of high-silicon molybdenum ductile iron, After   |
| Dilatometer/Unalloyed / Greensand, (A) 3mm (B) 6mm (C) 9mm66                         |
| Figure 4.30: Optical microstructure of high-silicon molybdenum ductile iron, After   |
| Dilatometer/Unalloyed / Investment, (A) 3mm (B) 6mm (C) 9mm66                        |
| Figure 4.31: Optical microstructure of high-silicon molybdenum ductile iron, As cast |
| /Alloyed /Greensand, (A) 3mm (B) 6mm (C) 9mm67                                       |
| Figure 4.32: Optical microstructure of high-silicon molybdenum ductile iron, As Cast |
| /Alloyed /Investment, (A) 3mm (B) 6mm (C) 9mm67                                      |
| Figure 4.33: Optical microstructure of high-silicon molybdenum ductile iron, After   |
| Dilatometer /Alloyed /Greensand, (A) 3mm (B) 6mm (C) 9mm68                           |
| Figure 4.34: Optical microstructure of high-silicon molybdenum ductile iron, After   |
| Dilatometer / Alloyed / Investment, (A) 3mm (B) 6mm (C) 9mm68                        |

### **Nomenclature**

SEM Scanning Electron Microscopy

OM Optical Metallography

EDS Energy Dispersive X-Ray Spectroscopy
DSC Differential Scanning Calorimetry
CTE Coefficient of Thermal Expansion

SG Spheroidal Graphite

TW Thin-Wall

TWDI Thin-Wall Ductile Iron

A<sub>1</sub> Austenite to ferrite transformation temperature.

FCC Face Center Cubic BCC Body Center Cubic

BHN Brinell Hardness Number

GS Green Sand INV Investment Mold

Inc Inoculation

#### **Abstract**

The automotive industry is concerned with fuel economy and gas emissions; whereas the cost consideration is customer mandated. Silicon Molybdenum ductile Iron (SiMo) is characterized with its combination of low cost and unique properties in high temperature applications, such as automotive parts like exhaust manifolds and turbocharger housings, furnace applications and turbine castings. A typical chemical composition of SiMo ductile iron contains 4% Si and 0.5-2.0% Mo and can be used up to 840-850°C.

The main objective of this research aims at developing technology to produce high quality thin wall castings and to introduce new grades of SiMo castings with specific properties that add to the performance of ductile iron castings in special high temperature applications. This research also aimed at reaching a better understanding of the influence of the cooling rate, inoculants chemistry and alloying elements such as Cr, Ni and V on the formation of precipitates in SiMo ductile irons.

In order to achieve these objectives, different molds of 3, 6, 9 mm thickness were prepared from greensand and ceramic material to give different cooling rates.

Optical metallography (OM) as well as Scanning Electron Microscopy (SEM) were used to clearly show the different phases, i.e., eutectic carbides and fine precipitates. Moreover, Energy Dispersive X-Ray Spectroscopy (EDS) analysis was followed to reach a semi - quantitative estimate of the relevant compositions. The solidification sequence as well as solid-state transformations were followed using phase diagram calculation via Thermo-Calc software, Differential Scanning Calorimetry (DSC) and dilatometry analysis.

Intensive SEM and EDS investigations have detected three types of carbides in the microstructure of SiMo-irons. Eutectic carbides of  $M_6C$  type were found embedded in a fine precipitate of  $Fe_2MoC/M_6C$  – type carbides in the vicinity of the intercellular regions. It is showed that the eutectic carbides are mainly (Fe, Mo, Si) Carbides containing up to 48% Mo, whereas the fine precipitate carbides contain lower Mocontents. Both carbide types did not appear to have a strict stoichometric composition. The third type of carbides is fine dispersed precipitate of  $M_7C_3$  in ferrite.

In alloyed SiMo angular carbides and dot-like carbide were clearly observed in the microstructure of the alloyed SiMo samples. The eutectic carbides are mainly (Fe, Mo, Cr, V, Ni) carbides with Mo-content reaching 45%, whereas the fine precipitate is of more complex nature with lower Mo-contents.

The morphology and composition of the eutectic carbides vary with the cooling rate. At high cooling rates the eutectic carbides have the Chinese script morphology with wide spectrum of Mo-contents. With slower cooling rates, fish-bone structures are frequently encountered with higher Mo-contents, related to higher degrees of segregations associated with slow cooling.

DSC data revealed that the fine precipitate forms on cooling below the lower critical temperature after the completion of proeutectoid and eutectoid reactions.

The dilatometer charts showed similar expansion behavior for both investment and green sand molds of the three different thicknesses at elevated temperature. The maximum operation temperature of the unalloyed SiMo alloys is 900 °C which is high enough when compared to the other tradition SiMo alloys in the market (max operation temperature 700-750 °C). In alloyed SiMo samples with the same thickness (Green sand and investment) showed a decrease in the  $A_1$  temperature by about 30 to 50 °C. This apparently because of the 0.6% Ni which plays as austenite stabilizer.

### **Chapter 1: Introduction**

Silicon Molybdenum Ductile Iron (SiMo) is a special purpose heat resistant alloy which is considered to be the cheapest material compared to other austenitic alloys [1-3]. Moreover, SiMo can keep the dimensions without any changes for high numbers of cycles that can range from below freezing temperatures to very high temperatures up to 850°C. These properties nominates SiMo alloys to be suitable for automotive applications as exhaust manifolds and turbocharger housings, furnace applications and turbine castings [2]. However, When the operation temperature is increased, SiMo alloys show limitations unlike the very expensive austenitic alloys with its higher strength at high operation temperatures due to their FCC structure which has fewer slip systems making it difficult for deformations to happen and permits larger amounts of interstitial carbon in the structure compared to ferrite, which has a BCC structure, resulting in a higher solid solution strengthening effect in austenite [1][3][4].

So, the current objectives are currently being tackled through three trends: First, technological development to produce thin wall castings, down to 3 mm wall thickness. Second, development of new grades of SiMo castings, with specific properties, that adds to the performance of ductile iron castings in special high temperature applications. Third, study the solidification sequence and carbides nature and morphology.

The studied parameters include: chemical composition of the SiMo alloys with three inoculants chemistry, different cooling rate by using two molding techniques (investment casting and greensand), thermal and dimensional stability and heat treatment. The impact of these parameters on solidification behavior studied using advanced thermal analysis techniques, thermodynamic and kinetic analysis, DSC and dilatometry analysis.

The physical properties including thermal expansion, was also evaluated as related to the different metallurgical and technological conditions involved in the production process.