سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

BIOTECHNOLOGICAL STUDIES ON MEDICINAL PLANT PLECTRANTHUS BARBATUS ANDREWS

By DINA SAYED MOHAMED MAHMOUD

B.Sc., Agric. Sc. (Biotechnology), Cairo Univ. (2012)

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics Faculty of Agriculture Ain-Shams University

Approval Sheet

BIOTECHNOLOGICAL STUDIES ON MEDICINAL PLANT PLECTRANTHUS BARBATUS ANDREWS

DINA SAYED MOHAMED MAHMOUD

B.Sc., Agric. Sc. (Biotechnology), Cairo Univ. (2012)

This Thesis for Master Degree has been approved by:
Dr. Magda Ali Mahmoud El-Enany
Associate Researcher Professor of Genetics, National Research
Center, Giza, Egypt.
Dr. Mohamed Abdel-Salam Rashed
Professor Emeritus of Genetics, Faculty of Agriculture, Ain Shams
University
Dr. Lamyaa Mostafa Kamal Sayed
Associate Professor of Genetics, Faculty of Agriculture, Ain Shams
University
Dr. Eman Mahmoud Fahmy
Professor Emeritus of Genetics, Faculty of Agriculture, Ain Shams
University
Date of Examination: 20 / 2 / 2019

BIOTECHNOLOGICAL STUDIES ON MEDICINAL PLANT PLECTRANTHUS BARBATUS ANDREWS

By DINA SAYED MOHAMED MAHMOUD

B. Sc., Agric. Sc. (Biotechnology), Cairo Univ. (2012)

Under the supervision of:

Dr. Eman Mahmoud Fahmy

Professor Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Lamyaa Mostafa Kamal Sayed

Associate Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Ismail Gamal Elden Diab

Associate Researcher Professor of Biotechnology, Tissue Culture Unit, Department of Plant Genetic Resources, Desert Research Center.

ABSTRACT

Dina Sayed Mohamed: Biotechnological studies on medicinal plant Plectranthus barbatus Andrews. Unpublished M.Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2019

This study aimed at introducing the new species *Plectranthus* barbatuse Andrews (Coleus forsckoli) belonging to family: Lamiaceae to the Egyptian flora for its medicinal importance due to the presence of active ingredient forskolin. The conservation of P.barbatuse through in vitro micro-propagation of stem nods showed that the two cytokinin TDZ and Kin gave the best number of roots and shoot length, respectively. Production of forskolin using callus culture was inducted in both leaf and stem node explants with 2,4-D auxin, while negative results appeared in the control. For the extraction and quantitative estimation of forskolin by HPLC, the forskolin content in leaf callus on MS medium containing 2mg/L 2,4-D recorded the highest value (467.76 mg/g) in the fifth subculture. Moreover, the highest forskolin content in stem callus on MS medium containing 0.5mg/L 2,4-D was 751.96 mg/g in the fifth subculture. Using elicitor feeding in leaf callus gave the best forskolin content with sucrose or casine, while in stem callus, casine only gave the best forskolin content. The relative gene expression analysis using quantitative real time-PCR (qRT-PCR) in the previous stage was detected by using primer pairs for three Cytochrome 450 genes. P450c4 and P450c6 showed up-regulated expression in stem callus than leaf callus, while P450c7 gave up-regulated expression in leaf callus than stem callus compared with the control (mother plant). These results confirmed the importance of Cytochrome P450 genes expression in stem and leaf.

Keywords: Plectranthus barbatuse Andrews. Forskolin. Micropropagation, Callus culture, HPLC. Gene expression, **Ouantitative** real time (RT-PCR), CytochromeP 450 genes

ACKNOWLEDGEMENT

First and foremost thanks to "Allah", the most merciful for guiding me and giving me the strength to complete this work.

I would like to express my deep gratitude to **Professor Dr. Eman M. Fahmy**, Professor Emeritus of Genetics, Faculty of Agriculture, Ain Shams University for her supervision guidance, care, sincere help, constructive criticism, great encouragement and review of the manuscript.

I would like also to express my deepest gratitude and sincere thanks to **Dr. Lamyaa Mostafa Kamal Sayed**, Associate Professor of Genetic, Faculty of Agriculture, Ain Shams University for her continuous supervision, constructive suggestions, supplying me with all the necessary facilities and review of the manuscript.

My sincere appreciation to **Dr. Mohamed Ismail Gamal Elden Diab**, Associate Researcher Professor of Biotechnology, Tissue Culture
Unit, Department of Plant Genetic Resources, Desert Research Center for
his kind support, valuable supervision, suggesting the problem, kind
guidance, great help and review of the manuscript.

Great appreciation is also extended to all the staff members of Plant Genetic Resources Department, Desert Research Center and of Genetics Department, Faculty of Agriculture, Ain Shams University.

CONTENTS

ABSTRACT
LIST OF TABLES.
LIST OF FIGURES
LIST OF ABBRIVATION
INTRODUCTION
REVIEW OF LITERATURE
1-Plectranthus barbatuse as an important medicinal plant
2. Micropropagation of <i>P.barbatuse</i>
2.1. Induction stage of <i>P.barbatuse</i>
2.2. Rooting and acclimatization stage of <i>P.barbatuse</i>
3. Forskolin production of <i>P.barbatuse</i>
3.1. Production of forskolin by callus culture
3.2. Increase of forskolin production using elicitors
3.2.1. Casein hydrolysate
3.2.2. Sucrose
4. Quantitative real –time (QR)PCR analysis
MATERIALS AND METHODS
a. Materials
b. Methods
1. Micropropagation experiments
1.1. Explant Sterilization
1.2. Basic Nutrient medium and culture condition
1.3. Effect of growth regulators on different growth stages of the
explants
1.3. 1. Establishment stage
I.3. 2. Multiplication stage
1.3. 3. Rooting stage
1.3. 4. Acclimatization stage
2. Production of forskolin by callus culture
2.1. Induction and maintenance of callus

2.2. Elicitors feeding
2.2. 1. Leaf callus
2.2. 2. Stem callus
2.3. Extraction and quantitative estimation of forskolin by HPLC
2.3. 1. Standard preparation
2.3.2. Sample preparation
2.3.3. Chromatographic condition
3. Quantitative Real-Time PCR (RT-PCR)
3.1. RNA extraction method
3.1.1. Procedure
3.2. cDNA synthesis
3.3. Relative expression analysis using quantitative real time RT-
PCR (qPCR)
3.4. Real time PCR data analysis
4. Statistical analyses
RESULTS AND DISCUSSION
1. Micropropagation
1.1. Effect of growth regulators on the different growth stages of
Plectranthus barbatuse
1.1.1. Induction and multiplication stages
1.1.2. Rooting stage
1.1.3. Acclimatization stage
2. Production of forskolin by callus culture
2.1. Extraction and quantitative estimation of forskolin by HPLC
2.2. Elicitors feeding
3. Quantitative-real time PCR analysis
SUMMARY
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

Table No.		Page
Table (1):	Primers design sequence for cytochrome P450 (CYP) genes	25
Table (2):	The effect of different concentrations of growth	
().	regulators (BA, Kin and TDZ) on the mean number	
	and length of axillary shoots/ explant of P .	28
	barbatus	20
Table (3)	Effect of two growth regulators (NAA and IBA) on	
14010 (3).	the number of roots/ explant mean, length of roots	
	mean and length of shoots mean of <i>P. barbatuse</i> .	32
Table (4):	The induction of callus from leaf sections of P.	32
1 aoic (+).	barbatus cultured on MS medium contained growth	
	regulator (auxin) 2,4-D	37
Table (5).	The induction of callus from stem nodes sections of	31
1 able (3).		
	Plectranthus barbatuse cultured on MS medium	41
T 11 (6) 1	contained growth regulator (auxin) 2,4-D	41
Table (6):	The forskolin content in leaves (explant) through the	
	three subcultures with different concentrations of	
	growth regulator 2,4-D compared with leaf of	
	mother plant as the control	44
Table (7): '	The forskolin content in stems (explant) through the	
	three subcultures with different concentrations of	
	growth regulator 2,4-D compared with Stem nods	
	of mother plant as the control	45
Table (8):	The forskolin content in leaves through the third	
	subcultures with concentration of 2 mg/L 2,4-D of	
	different concentrations from elicitors (sucrose and	
	casein) compared with the control	47
Table (9):	The forskolin content in stems through the third	
	subculture with concentration of 0.5 mg/L 2,4-D	

Table No.		Page
	with different concentrations from elicitors	49
	(sucrose and casein) compared with the control	
Table (10):	Q- Real Time- PCR differences as calculated by $\boldsymbol{\Delta}$	
	CT method for the gene Cytochrome 450c4 of both	
	treated callus from leaf and stem with elicitor	
	casein for callus of Plectranthus barbatus	51
	compared with the untreated (control)	
Table (11):	Q- Real Time PCR difference as calculated by $\boldsymbol{\Delta}$	
	CT method for the gene Cytochrome 450c6 of both	
	treated leaf and stem callus with elicitor casein of	
	Plectranthus barbatuse compared with	53
	control	
Table (12):	Q- Real Time PCR difference as calculated by $\boldsymbol{\Delta}$	
	CT method for Cytochrome 450c7 gene of both	
	treated leaf and stem with elicitor casein for callus	
	of Plectranthus barbatuse compared with the	55
	untreated (control)	