

A study on the phytochemical Analysis, Gold Nanoparticles Synthesis using some Wild Plant Extracts and Its Biological Activity

Presented by Nadia Ahmed Soliman Ali

A Thesis Submitted

To

Faculty of Science, Chemistry Department

For

The Degree of Doctor of Philosophy of Science

Faculty of Science /Ain Shams University

2019

Astudy on the Phytochmical Analysis, Gold Nanoparticle Synthesis using some Wild Plant Extracts and Its Biological Activity

A thesis submitted by **Nadia Ahmed Soliman Ali**

For

The Degree of Doctor of Philosophy of Science

(Chemistry)

Under supervision of signature

Prof. Dr. Mostafa Mohamed Hassan Khalil Professor of Inorganic Chemistry Faculty of Science Ain Shams University Dr. Eman H. Esmail Assistant Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University. Prof. Dr. Heba Ibrahim Abd El-Moaty Professor of Medicinal and Aromatic Plants Department, Desert Research Center Dr. Dina Yehia Sabry Assistant Professor of Inorganic Chemistry Faculty of Science Ain Shams University

Prof. Dr. Ibrahim H.A. Badr

Head of Chemistry Department Faculty of Science – Ain Shams University

A study on the phytochmical Analysis, Gold Nanoparticle Synthesis using some Wild Plant Extracts and Its Biological Activity

A thesis submitted by

Nadia Ahmed Soliman Ali

For The Degree of Doctor of Philosophy of Science (Inorganic Chemistry)

<u>Thesis Supervisors</u> : <u>s</u>	<u>ignature</u>
Prof. Dr. Mostafa Mohamed Hassan Khalil	
Professor of Inorganic Chemistry	
Faculty of Science	
Ain Shams University	
Dr. Eman H. Ismail	
Assistant Professor of Inorganic and Analytical	
Chemistry, Faculty of Science, Ain Shams	
Prof. Dr. Heba Ibrahim Abd El-Moaty	
Professor of Phytochemistry Department of	
Medicinal and Aromatic plants Desert Research Center	er
Dr. Dina Yehia Sabry	•••••
Assistant Professor of Inorganic Chemistry	
Faculty of Science Ain Shams University	

Prof. Dr. Ibrahim H.A. Badr

Head of Chemistry Department Faculty of Science – Ain Shams University

Firstly my great thanks in the beginning and the last to Allah the most merciful by the grace of whom, this work came to the light.

I would like to express my gratitude to my supervisor, **Prof. Dr.**Mostafa M. H. Khalil, Professor of Inorganic and Analytical Chemistry,
Faculty of Science, Ain Shams University, for giving me the opportunity to
work in this field and for giving me the chance to be one of his students. His
guidance helped me in all the time of research and writing of this thesis. I
could not have imagined having a better advisor and mentor for my Doctor of
Philosophy of Science study. He did not only guide this work and find time to
discuss it with me but also gave me the confidence to express my ideas freely.
His leadership, support, attention to details, hard work have set an example I
hope to match some day. Actually he was more than a supervisor, he was a
teacher who inspired me and pushed me forward.

Words are not enough to describe my deep thanks to **Pof. Dr. Heba Ibrahim Abd El-Moaty,** Professor of Medicinal and Aromatic Plants
Department, Desert Research Center, for suggesting the program of this
work, her guidance and supervision in the course of the work, and for her
stimulating criticisms and help in the preparation of the thesis

I would like to express my deep thanks and gratitude to **Dr. Eman H. Ismail** Professor of Inorganic, Faculty of Science, Ain Shams, for her invaluable help and support throughout the course of this work.

I would like to express my deep thanks and gratitude to **Dr Dina Yehia Sabry**, Associate Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for her invaluable help and support throughout the course of this work.

I would also like to thank my Colleagues in the Chemistry Department, Faculty of Science, Ain Shams University for their help.

Finally, I want to express my sincere and great thanks to my Familly, especially my parents for their continuous support, spiritual help and patience all over my life and my brothers, wife of my elder brother for their encouragement and support during my work.

> Nadia Ahmed Soliman ALi

List of Contents

Subject Page No.

LIST OF ABBREVIATIONS	i
LIST OF TABLES.	ii
List of Figures	iii
Abstract	X
SUMMARY.	xi
Chapter I: Introduction	
1.1 Introduction.	1
1.2 A brief history of nanoparticles.	5
1.3 Classification of nanoparticles Properties of nanoparticles.	8
1.3.1 Classification of nanoparticles according to composition	8
2 Classification of Nanomaterials according to dimension 7.1.	9
.3 Classification of Nanomaterials according to Morphology 7.	11
1.4 Properties of nanoparticles	11
1.4.1.Nanoparticles and surface effects	12
1.4.2 Size effects	13
1.4.3 Origin of surface plasmon resonance in noble metal	14
nanoparticles.	
1.5 Metallic nanoparticles	19
1.5.1Silver anoparticles.	19
1.5.2 Gold nanoparticles	20
1.6 General synthetic routes of metallic nanoparticles	22
1.7 Methods for synthesize of metallic nanoparticles	23
1.7.1Chemical Methods of preparation	25
1.7.2 Physical methods	29
1.7.3Biological Synthesis of Metal Nanoparticles via Plants	30
1.8 Synthesis of silver and gold nanoparticles using plant extracts.	32
1.9 Phytochemicals having antioxidant activity.	41
1.10 The plants in theis study	45
1.9.1 Ephorbia dendroides antioxidant.	45
1.10.2. Moricandia nitens antioxidant.	46
1.10.3 Pituranthos tortuosus antioxidant.	47

Oontents

AIM OF THE Work	50
CHAPTER II: MATERIALS AND METHODS	51
2.1 Material.	51
2.2 Analytical instruments.	51
2.2.1 UV–visible spectral analysis.	52
2.2.2 Transmission electron microscopy (TEM)	52
2.2.3 X-Ray Diffraction	52
2.2.4 Fourier transform infrared spectroscopy.	52
2.2.5 Thermogravimetric analysis	53
2.2.6 Dynamic Light Scattering (DLS).	53
2.3 Preparation of water extract	53
2.4 Preparation of 70% ethanol extract	54
2.5 Preparation of chloroform extract.	54
2.6 Synthesis of gold nanoparticles.	55
2.7 Anti-diabetic potential Evolution.	55
2.8 Helicobacter pylori activity assay.	56
2.9 Cytotoxicity assay	57
2.10.Phytochemical Studies.	58
2.10.1.1 Steam distillation for volatile oils	58
2.10.1.2 Test for glycosides and/or carbohydrates (Molish's test)	58
2.10.1.3 Test for saponins.	59
2.10.1.4 Preparation of water extract for further screening.	59
2.10.1.5 Test for alkaloids.	59
2. 10.2.1 Investigation of Flavonoids	60
CHAPTER III Synthesis of gold nanoparticles using Euphorbia	69
dendroides extracts.	
3. 1 Synthesis of gold and silver nanoparticles using Euphorbia	69
dendroides water extract.	
3.1.1The phytochemical screening	70
3.1.2 UV–visible spectroscopy, TEM Studies.	71
3.1.2.1 Effect of concentration of Euphorbia dendroides aerial parts	71
extract	
3.1.2.2 Effect of contact time.	77
3.1.2.3 Effect of temperature	79
3.1.2.4 Effect of pH	82
3.1.5 Fluorescence spectra of AuNPs.	87
3.1.6 X-Ray diffraction study.	88
3.1.7 Fourier transforms infrared spectroscopy (FTIR):.	91

Oontents

3.1.8 Thermal gravimetric analysis (TGA)	94
, 0 0 1	95
3.1.10 Anti-diabetic activity.	99
3.1.11 Helicobacter pylori Activities assay	101
3.1.12 Cytotoxicity Activity	101
3.2.1 Synthesis of gold nanoparticles using Euphorbia dendroides	106
ethanol extract	
3.2.1.1 Preliminary phytochemical screening of Euphorbia dendroides.	106
3.2.1.2 UV–visible spectroscopy and TEM Studies	107
3.2.1.3 Fourier transforms infrared spectroscopy (FTIR).	109
3.2.2 Synthesis of gold nanoparticles using Euphorbia dendroides	111
chloroform extracts.	
3.2.2.1The preliminary phytochemical screening of E. dendroides	111
plant Chloroform extract.	
3.2.2.2 UV–visible spectroscopy and TEM Studies.	112
3.3.2.3 Fourier transform infrared spectroscopy (FTIR).	114
3.4 Extraction Studies and nano gold particules synthesis.	157
3.4.1. Investigation of Flavonoids	114
3.4.1.1 Preparation of Flavonoids extract from Euphorbia dendroides.	114
3.4.1.2 Chromatographic investigation	118
3.4.2.1 Identification of compound 1	116
3.4.2.2 Identification of compound 2	122
3.4.2.3 Identification of compound 3	127
3.4.2.4 Identification of compound 4	129
3.4.2.5 Identification of compound 5	132
3.4.2.6 Identification of compound 6	
3.4.2.7 Identification of compound 7	
3.4.3 Gold Nano synthesis using extracted compounds	138
3.4.3.1 Gold nano synthesis using quercetin compound	
3.4.3.2 Gold nano synthesis using rutin compound.	143
3.4.3.3 Gold nano synthesis chlorogenic acid	148
	152
	157
3.4.2.6 Gold Nano synthesis using p-cumaric acid	162
3.4.4 In Vitro Anti-Helicobacter Pylori Activity synthesized nano gold	166
using (Rutin,Qurecetin and Ellagic acid).	

Quitents

Chapter (IV) Synthesis of gold nanoparticles using Moricandia	171
nitens	
4.1The phytochemical screening.	172
4.2 Visible spectroscopy and TEM Studies.	172
4.2.1 Effect of extract concentration.	172
4.2.2 Effect of contact time stablity.	176
4.2.3 Effect of pH on nanoparticles synthesis.	177
4.2.4Effect of reaction temperature on AuNPs synthesis	179
4.3 X-Ray diffraction study	180
3.4 Fourier transforms infrared spectroscopy (FTIR)	181
4.5. Thermal gravimetric analysis	182
4.6. Flurrescence of AuNPs	183
4.7. Dynamic light scattering.	186
4.8. In vitro α-glucosidase enzyme inhibition assay.	189
4.9. In Vitro Anti-Helicobacter Pylori Activity.	190
4.10 In vitro cytotoxicity of Au NPs	191
Chapter V	194
Synthesis of gold nanoparticles using Pituranthos tortuosus	
5.1Phytochemical screening	194
5.2 UV–visible spectroscopy and TEM Studies.	195
5.2.1 Effect of extract concentration.	195
5.2.2 Effect of contact time	198
5.2.3 Effect of pH on nanoparticles synthesis.	199
5.3 Flurrescence of AuNPs	202
5.4 Effect of reaction temperature on AuNPs synthesis.	206
5.5The X-Ray Diffraction Study.	207
5.6 Fourier transforms infrared spectroscopy (FTIR)	210
5.7 Thermal gravimetric analysis	211
5.8 Dynamic light scattering.	208
5.9 Inhibition of AuNPs on α-glucosidase.	213
5.10 In Vitro Anti-Helicobacter Pylori Activity.	215
5.11. Cell Viability	216
5.11 Isolation of Pituranthos tortuosus essential oil	218
5.12 Identification of bioactive compounds using GC-MS apparatus library	218
5.12.1 Chemical composition of the isolated essential oils.	219
References	222
ARABIC SUMMARY	-

List of Abbreviations

AuNPs : Gold nanoparticles

AgNPs : Silver nanoparticles

DLS: Dynamic Light Scattering

FTIR : Fourier transform infra-red spectroscopy

FT-IR : Fourier Transform Infrared

FWHM: Full width at half maximum

FWHM: Full width at half maximum

SPR : Surface plasmon resonance

TEM : Transmission electron microscopy

TGA: Thermo gravimetric analysis

HePG2 : Hepatocellular carcinoma

HCT-116 : Colon carcinoma

MIC :Minimal inhibitory concentration

List of Tables

Table		Page
Table (1.1)	Some Common Objects in Nanometers	5
Table (1.2)	thesis of silver and gold nanoparticles by plant extracts	36
Table (3.1)	preliminary phytochemical screening carried out on the E.dendriodes arial part extract	70
Table (3.2)	Anti-diabetic activity (IC ₅₀) of Acarbose, extract AuNPs and AgNPs	100
Table (3.3)	MIC of Clarithromycin, extract, AuNPs and AgNPs	102
Table (3.4)	Cytotoxicity (IC ₅₀) of aqueous extract and the nanoparticles	105
Table (3.5)	Preliminary phytochemical screening for Ethanolic 70 % extract of <i>Euphorbia dendroides</i>	106
Table (3.6)	Preliminary phytochemical screening for Chloroform extract of <i>Euphorbia dendroides</i>	111
Table (3.7)	Rf values, color reactions of compound 1	118
Table (3.8)	Rf values, color reactions of compound 2	122
Table (3.9)	R _f values and color reactions of compound 3	127
Table (3.10)	RF values and color reactions of compound 4	129
Table (3.11)	$R_{\rm f}$ values, color reactions and UV spectral data of compound 5	132
Table (3.12)	RF values and color reactions of compound 6	134
Table (3.13)	RF values and color reactions of compound 7	136
Table (3.14)	MIC of Clarithromycin, Rutin, Qurecetin Ellagic acid and theirs AuNPs synthesised	167
Table (4.1)	preliminary phytochemical screening carried out on the Moricandia nitens	172
Table(4.2)	Anti-diabetic activity (IC ₅₀) of Acarbose, extract and AuNPs	179

List of Tables

Table		Page
Table (4.3)	MIC of Clarithromycin, extract andAuNPs	190
Table(4.4)	Cytotoxicity (IC50) of aqueous extract of Moricandia nitens and the nanoparticles	192
Table (5.1)	The preliminary screening of the water extract of Piturantho stortuosus	195
Table(5.2)	Anti-diabetic activity (IC ₅₀) of Acarbose, extract and AuNPs	214
Table(5.3)	MIC of Clarithromycin, extract and AuNPs	215
Table(5.4)	Cytotoxicity (IC ₅₀) of aqueous extract of <i>Pituranthos tortuosus</i> and the nanoparticles	216

List of Figures

Figure		Pag e
Figure (1.1)	Comparison of the effect of size and shape of nanoparticles on the coloring of stained glass (Stained Glass Museum, Great Britain	7
Figure (1.2)	The Lycurgus Cup in reflected (left) and in transmitted (right) light. Trustees of the British Museum	8
Figure (1.3)	Organic and inorganic nanoparticles	9
Figure (1.4)	Classification of nanomaterials by size of their structural elements: 0D (zero- dimensional) clusters; 1D (one-dimensional) nanotubes, fibers and rods; 2D (two-dimensional) films and coats; 3D (three-dimensional) polyagraphic	10
Figure (1.5)	dimensional) polycrystals Schematic illustration of the collective oscillation of the conduction electrons of a spherical gold colloid in response to the electric field of incident light.	10
Figure (1.6)	gold nanoparticles absorption of various sizes and shapes	18
Figure (1.7)	Nanoparticles in comparison with other biological entities	22
Figure (1.8)	Schematic diagram of gold nanoparticle growth.	22
Figure (1.9)	Different approaches and methods for synthesizing nanoparticles	24
Figure (1.10)	Scheme for AuNP synthesis using the Turkevich method	26
Figure (1.11)	Biological synthesis of nanoparticles using plant extracts	32
Figure (1.12)	Various types of plants used for the synthesis of metal nanoparticles.	35
Figure (1.13)	Reducing and capping agents in plant phytochemicals that used for the synthesis of metal nanoparticles.	42
Figure (1.14)	Au ³⁺ reduction mechanism by flavanoids, myricetin and gallic acid in R. damascena extract	44
Figure (3.1)	UV-Vis absorption spectra of extract, AuNPs and AgNPs formed using 1ml of plant extract	72

Figure (3.2) Absorption spectra of extract and AuNPs formed using Iml of plant extract 74 Figure (3.3) TEM images of AuNPs synthesized using 0.05ml (5x10 ⁻³ % (w/v)) HAuCl4 and (a) 0.1ml (0.1% w/v),(b) 1ml (1% w/v) of extract concentration 75 Figure (3.4) Spectra of silver nanoparticles using constant AgNO ₃ concentration (1x10 ⁻³ M) with different concentrations of extract from 0.1 to 3ml 76 Figure (3.5) UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes. 76 Figure (3.6) UV-vis spectra recorded from reduction of AgNO ₃ (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to 144h. 79 Figure (3.7) UV-visible spectra of gold colloids synthesized at different temperatures 80 Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures 83 Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract 85 Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract 85 Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 86 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration. (\(\lambda\) ex=300 nm). 88 Figure (3.14) Fluorescence spectra of extract as formed as a function of pH (\(\lambda\) ex=300 nm). 89 Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (\(\lambda\) ex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts extract and silver nanoparticles, arial parts extract and silver nanoparticles, arial parts extract and silver nanoparticles, arial parts	Figure		Pag
using 1ml of plant extract 74 Figure (3.3) TEM images of AuNPs synthesized using 0.05ml (5x10³% (w/v)) HAuCl4 and (a) 0.1ml (0.1% w/v),(b) 1ml (1% w/v) of extract concentration 75 Figure (3.4) Spectra of silver nanoparticles using constant AgNO₃ concentration (1x10³M) with different concentrations of extract from 0.1 to 3ml 76 Figure (3.5) UV−vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes. 76 Figure (3.6) UV−vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h. 79 Figure (3.7) UV−visible spectra of gold colloids synthesized at different temperatures 80 Figure (3.8) UV−visible spectra of silver colloidssynthesized at different temperatures 83 Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract 82 Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract 85 Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 86 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration (λex=300 nm). 88 Figure (3.14)			e
Figure (3.3)TEM images of AuNPs synthesized using 0.05ml (5x10 ⁻³ % (w/v)) HAuCl4 and (a) 0.1ml (0.1% w/v),(b) Iml (1% w/v) of extract concentration75Figure (3.4)Spectra of silver nanoparticles using constant AgNO3 concentration (1x10 ⁻³ M) with different concentrations of extract from 0.1 to 3ml76Figure (3.5)UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes.76Figure (3.6)UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h.79Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).88Figure (3.14)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89 <th>Figure (3.2)</th> <th></th> <th>_,</th>	Figure (3.2)		_,
(5x10 ⁻³ % (w/v)) HAuCl4 and (a) 0.1ml (0.1% w/v),(b) 1ml (1% w/v) of extract concentration 75			7/4
w/v),(b) 1ml (1% w/v) of extract concentration 75	Figure (3.3)		
Figure (3.4) Spectra of silver nanoparticles using constant AgNO ₃ concentration (1x10 ⁻³ M) with different concentrations of extract from 0.1 to 3ml Figure (3.5) UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes. Figure (3.6) UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h. 79 Figure (3.7) UV-visible spectra of gold colloids synthesized at different temperatures Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Figure (3.13) Fluorescence spectra of AuNPs formed as a function of extract concentration.(\(\lambda\) ex=300 nm). Figure (3.14) Figure (3.15) Fluorescence spectra of AuNPs as formed as a function of pH (\lambda\) ex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract Figure (3.17) Figure (3.17) FIIR spectra of gold nanoparticles, arial parts			
concentration (1x10 ⁻³ M) with different concentrations of extract from 0.1 to 3ml Figure (3.5) UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes. Figure (3.6) UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h. Figure (3.7) UV-visible spectra of gold colloids synthesized at different temperatures Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Figure (3.13) Fluorescence spectra of AuNPs formed as a function of extract concentration.(\(\lambda\) ex=300 nm). Figure (3.14) Figure (3.15) Fluorescence spectra of AuNPs as formed as a function of pH (\lambda\) ex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract Figure (3.17) Figure (3.17) FIIR spectra of gold nanoparticles, arial parts			75
Figure (3.5)Of extract from 0.1 to 3ml76Figure (3.5)UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes.76Figure (3.6)UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h.79Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts	Figure (3.4)		
Figure (3.5)UV-vis spectra recorded from reduction of 1.4x10-4 M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes.76Figure (3.6)UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h.79Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).88Figure (3.14)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts			
M HAuCl4 using 1% w/v E. dendriodes extract at various time intervals of 2 minutes for 50 minutes. Figure (3.6) UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h. 79 Figure (3.7) UV-visible spectra of gold colloids synthesized at different temperatures 80 Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures 81 Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration.(\(\lambda\) ex=300 nm). Figure (3.13) Fluorescence spectra of extract as formed as a function of pH (\(\lambda\) ex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (\(\lambda\) ex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract FIGURE (3.17) FIIR spectra of gold nanoparticles, arial parts			76
rigure (3.6) Figure (3.6) VV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to 144h. Figure (3.7) VV-visible spectra of gold colloids synthesized at different temperatures Figure (3.8) VV-visible spectra of silver colloidssynthesized at different temperatures Figure (3.9) Vv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract Figure (3.10) Vv-vis spectra of AgNPs Formed using different pH E. dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm). Figure (3.13) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract FIGURE (3.17) FIIR spectra of gold nanoparticles, arial parts	Figure (3.5)	•	
Figure (3.6)UV-vis spectra recorded from reduction of AgNO3 (1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h.79Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts		<u> </u>	
(1x10-3M) using 1.2% w/v E. dendriodes extract at various time of 2 minutes to144h. Figure (3.7) UV-visible spectra of gold colloids synthesized at different temperatures 80 Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures 83 Figure (3.9) Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract 82 Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract 85 Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm). Figure (3.13) Fluorescence spectra of AuNPs as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract FIGURE (3.17) FIIR spectra of gold nanoparticles, arial parts			76
various time of 2 minutes to 144h.79Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FIIR spectra of gold nanoparticles, arial parts	Figure (3.6)		
Figure (3.7)UV-visible spectra of gold colloids synthesized at different temperatures80Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FIIR spectra of gold nanoparticles, arial parts			
different temperatures Figure (3.8) UV-visible spectra of silver colloidssynthesized at different temperatures Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm). Figure (3.13) Fluorescence spectra of AuNPs as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract FIGURE (3.17) FIIR spectra of gold nanoparticles, arial parts			79
Figure (3.8)UV-visible spectra of silver colloidssynthesized at different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E. dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts	Figure (3.7)	UV-visible spectra of gold colloids synthesized at	
different temperatures83Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts		different temperatures	80
Figure (3.9)Uv-vis spectra of AuNPs Formed using different pH E. Dendriodes aerial parts extract82Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FIIR spectra of gold nanoparticles, arial parts	Figure (3.8)	UV-visible spectra of silver colloidssynthesized at	
E. Dendriodes aerial parts extract Figure (3.10) Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract E. Dendriodes aerial parts extract Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract E. Dendriodes aerial parts extract E. Dendriodes aerial parts extract Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract E. Dendriodes aerial parts extract 82 Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract 85 Figure (3.11) Fluorescence spectra of AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 86 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of concentration. (λex=300 nm). 88 Figure (3.13) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FIIR spectra of gold nanoparticles, arial parts		different temperatures	83
Figure (3.10)Uv-vis spectra of AgNPs Formed using different pH E.dendriodes extract85Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts	Figure (3.9)	Uv-vis spectra of AuNPs Formed using different pH	
E.dendriodes extract Figure (3.11) TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration.(λ ex=300 nm). Figure (3.13) Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts	_		82
Figure (3.11)TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 1086Figure (3.12)Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ ex=300 nm).88Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FIIR spectra of gold nanoparticles, arial parts	Figure (3.10)	Uv-vis spectra of AgNPs Formed using different pH	
 9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ_{ex}=300 nm). Figure (3.13) Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract Figure (3.17) FIIR spectra of gold nanoparticles, arial parts 	_	E.dendriodes extract	85
9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10 Figure (3.12) Fluorescence spectra of AuNPs formed as a function of extract concentration. (λ _{ex} =300 nm). Figure (3.13) Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts	Figure (3.11)	TEM images of (a1) AuNPs at pH 3(a2) AuNPs at pH	
of extract concentration.(λ ex=300 nm). Figure (3.13) Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract Figure (3.17) FIIR spectra of gold nanoparticles, arial parts		9, (b1) AgNPs at pH 6, and (b2) AgNPs at pH 10	86
Figure (3.13)Fluorescence spectra of extract as formed as a function of concentration (λex=300 nm).88Figure (3.14)Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm).89Figure (3.15)Fluorescence spectra of extract as formed as a function of pH (λex=300 nm).89Figure (3.16)X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract91Figure (3.17)FTIR spectra of gold nanoparticles, arial parts	Figure (3.12)	Fluorescence spectra of AuNPs formed as a function	
function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts		of extract concentration.(λ_{ex} =300 nm).	88
function of concentration (λex=300 nm). Figure (3.14) Fluorescence spectra of AuNPs as formed as a function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FIIR spectra of gold nanoparticles, arial parts	Figure (3.13)	Fluorescence spectra of extract as formed as a	
function of pH (λex=300 nm). Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts		function of concentration (λex=300 nm).	88
Figure (3.15) Fluorescence spectra of extract as formed as a function of pH (λex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts	Figure (3.14)	Fluorescence spectra of AuNPs as formed as a	
function of pH (λex=300 nm). Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts		function of pH (λex=300 nm).	89
function of pH (λex=300 nm). 89 Figure (3.16) X-Ray diffraction patterns of (a) AuNPs and (b) AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts	Figure (3.15)	Fluorescence spectra of extract as formed as a	
AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts		function of pH (λex=300 nm).	89
AgNPsprepared with aqueous E.dendriodes arial parts extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts	Figure (3.16)	X-Ray diffraction patterns of (a) AuNPs and (b)	
extract 91 Figure (3.17) FTIR spectra of gold nanoparticles, arial parts			
			91
	Figure (3.17)	FTIR spectra of gold nanoparticles, arial parts	
		extractand silver nanoparticles	93

Figure		Pag
		e
Figure (3.18)	Possible chemical constituents of E. dendroides	
	extract responsible for the bioreduction of metal ions	93
Figure (3.19)	TGA of capped AuNPs using E. dendroides plant	
	extrct	94
Figure (3.20)	TGA of capped AgNPs using E. dendroides plant	
	extrct	95
Figure (3.21)	Intensity wt gaussiaon distribution of AuNPS	
	synthesized using Euphorbia dendroides aerial parts	
	extract	96
Figure (3.22)	Volume gaussiaon distribution of AuNPS synthesized	
	using Euphorbia dendroides aerial parts extract	96
Figure (3.23)	Number Gaussian distribution of AuNPS synthesized	
	using Euphorbia dendroides aerial parts extract	97
Figure (3.24)	Intensity wt gaussiaon distribution of AgNPS	
	synthesized using Euphorbia dendroides aerial parts	
	extract	97
Figure (3.25)	Volume Weighting gaussiaon distribution of AgNPS	
	synthesized using Euphorbia dendroides aerial parts	
	extract	98
Figure (3.26)	Number Weighting Gaussian distribution of AgNPS	
	synthesized using Euphorbia dendroides aerial parts	
	extract	98
Figure (3.27)	Anti-diabetic activity of Acarbose, extract, AuNPs	
	and AgNPs	100
Figure (3.28)	Anti-Helicobacter pylori Activity of Clarithromycin,	
	extract, AuNPs and AgNPs	102
Figure (3.29)	Comparative biocompatible efficacy of aqueous	
	extract of E.dendroides AuNP, and AgNPon	
	hepatocellular carcinoma (HePG2)	104
Figure (3.30)	Comparative biocompatible efficacy of aqueous	
	extract of E.dendroides AuNP, and AgNP on colon	
	carcinoma (HCT-116).	105
Figure (3.31)	Absorption spectra of (1 % w/v) of Euphorbia	
-	dendroides aerial parts ethanol extract	108
Figure (3.32)	TEM images of Au NPs nanoparticles	109