Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Studies on Bacterial Pathogens Causing Respiratory Manifestations in Equine

A thesis Presented by Ibrahim Omair Abdelsalam

(BVSc. 2001) for M.V.Sc. degree

(Microbiology: Bacteriology, Mycology, Immunology)

Under Supervision of

Prof. Dr.Kamelia Mahmoud

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof.Dr. Ahmed Samir

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Dr. Ahmed Orabi Hassan

Lecturer of Microbiology
Faculty of Veterinary Medicine
Cairo University

2019

Dedication

I would like to express my sincere gratitude and thanks to my family My thanks and highest consideration for my parents, brothers, sister and my childern Special thanks for my wife dr. samah adel I appreciate their encouragement and support, I pray with supplication for all of them to acheieve pleasure and success in their Sife

Acknowledgement

At first, thanks **God** the most gracious and merciful for everything given to me. Then, no words can express my cordial thanks and deep gratitude to my professors who helped and pushed me to continue and complete this work.

I would like to express my deep appreciation and sincere gratitude to **Prof. Dr. Kamelia Mahmoud Osman Ahmed,** Professor of Microbiology, Faculty of Veterinary Medicine- Cairo University, for her patient supervision, continuous encouragement and precious guidance during this work in addition to reading and criticizing the manuscript.

I would like to express my deep appreciation and sincere gratitude to **Prof. Dr. Ahmed Samir Mohamed Shehata** Professor of Microbiology, Faculty of Veterinary Medicine- Cairo University, for his patient supervision, continuous encouragement and precious guidance during this work in addition to reading and criticizing the manuscript.

I would like to express my deep appreciation and sincere gratitude to **Dr. Ahmed Orabi Hassan** Lecturer of Microbiology, Faculty of Veterinary Medicine, Cairo University who offered help, support, facilities, guidance and close valuable cooperation step by step during this work from A to Z with recognition for her favor surveillance, fruitful advice and help, reading the manuscript and discussing the results.

Thanks are due to all members and colleagues in Police Department and Training Department, Ministry of Interior, who gave hand of help during this course and spared no effort in helping me to accomplish this work.

Abstract

Name: Ibrahim Omair Abdelsalam

Nationality: Egyptian Date of birth: 25/9/1979

E-mail: Ibrahimomair@yahoo.com

Specification degree: Microbiology: Bacteriology, Mycology, Immunology.

Title of Thesis: "Studies on bacterial pathogens causing respiratory manifestations in equine"

1- Dr. Kamelia Mahmoud Osman Ahmed Professor of Microbiology Faculty of Veterinary Medicine, Cairo University.

2- Dr. Ahmed Samir Mohamed Shehata Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

3- Dr. Ahmed Orabi Hassan Lecturer of Microbiology, Faculty of Veterinary Medicine, Cairo University

Abstract:

The current study aimed to characterize the phenotypic bacterial causes of respiratory diseases in clinical ,subclinical and carrier horses of different ages and to perform biochemical , serological,virulance and antibiogram tests of isolated bacteria from horses with respiratory diseases.

Total numbers of (250) nasal swabs were collected from into three groups :foregin breed (59), native breed (133) and arabien breed (58).

The main isolate is *s.equi subspp.equi* recovered from all breedes in an incidance of (13.2%),the others detected bacteria are *S.zooepidemicus* in an incidance of (8%),*R.equi* in an incidance of (6.8%),*S.aureus* in an incidance of (8.4%),*S.epidermidis* in an incidance of (10%),*E.coli* in an incidance of (15.2%),*K.pneumoniae* in an incidance of (5.6%) and *P. vulgaris* in an incidance of (1.6%).

This study include the virulance assay to all isolated bacteria as Hemolytic activity, Congo red binding activity, Vero cell cytotoxicity and Biofilm formation , in adittion to achieve antibiogram tests to isolated bacteria that shows the Gram + ve bacteria are sensitive to cefoxitin , gentamicin , ciprofloxacin ,azithromycin while they show high resistance for vancomycin, while Gram - ve bacteria are sensitive for imipenem , cefoperazone , aztreonam and ceftriaxone while they show high resistance for gentamicin , cefotaxime.

Keywords: Respiratory diseases- Bacterial isolation- bacterial Identification-Horses

Content

Acknowledgement	III
Abstract	IV
Content	v
List of Tables	VI
List of Figures	VII
List of Abbreviations	VIII
1.Introduction	1
2.Review of Literature	6
Primary bacteria causing respiratory diseases in equine:	7
. Streptococcus equi subsp. equi:	
Streptococcus equi subspecies zooepidemicus (S. zooepidemicus):	
. Rhodococcus equi:	31
Secondary bacterial pathogens causing respiratory infection in equine:	37
3.Materials and Methods	
. Materials	
. Media used for isolation and cultivation of different bacterial species	15
Media used for preservation of bacterial isolates	
Media used for biochemical identification	
Stain 47	-
Diagnostic discs	47
Chemicals and Reagents:	47
Methods	53
4. Results	64
5.Discussion	87
6. Summary and Conclusion	111
7.References	119
Arabic Summary	2

List of Tables

Table (1): Numbers and types of samples collected from	
equine suffered from respiratory manifestation	
during 2014-2017	44
Table (2): The result of Streptococcus spp. from nasal	
swab samples:	65
Table (3): The result of <i>Rodococcus</i> spp. from nasal swab	
samples:	66
Table (4):The result of Staphylococcus spp. from nasal	
swab samples:	68
Table (5):The result of Enterobacteriacae isolets from	
nasal swab samples:	70
Table (6):The result of Lancifield typing of streptococci	
spp from nasal swab samples:	71
Table (7): The result of serotyping of <i>E.coli</i> :	73
Table (8): The results of haemolytic activity:	75
Table (9): The results of congo red activity:	77
Table (10): The results of vero cell cytotoxicity:	79
Table (11):The results of Biofilm formation:	81
Table (12): The results of Antibiogram for streptococci	
Table (13): The results of Antibiogram for staphylococci:	83
Table (14): The results of Antibiogram for <i>rodococci:</i>	84
Table (15): The results of Antibiogram for	
Enterobacteriacae:	86

List of Figures

Figure (1): sampling using nasal swab from the internal	
naris in a foal	53
Figure (2): nasal swab from the internal naris in a foal is	
kept in a broth media directly after sampling	53
Figure (3): Labeling after sampling using nasal swab	
from the internal naris in a foal	53
Figure (4): Showing results of Congo red test	76
Figure (5): Cytopathic effect of <i>E.coli</i> toxin on Vero	
cells. Elongation and vaculation and more	
clumping formation at the end of the Vero cell	78
Figure (6): Control negative showed no cytopathic effect	
on normal Vero cells (spindle elongated cells)	78
Figure (7): Microtiter plate assay for biofilm formation	
detection	80

List of Abbreviations

IURD	Infectious upper respiratory disease
S. equi	Streptococcus equi
FNEB	fibronectin-binding protein
CR+	Congo red positive
PCR	polymerase chain reaction
NP	nasopharyngeal
GP	guttural pouch
SeM	S.equi M-like protein
SLO-like	streptolysin O-like
FNEB	fibronectin-binding protein
SclC	the cell surface collagen-like protein
A	Alpha
β	Beta
γ	Gamma
Fn	fibronectin protein
GBD	gelatin-binding domain
Scl	streptococcal collagen-like protein
LAD	lower airway disease
sAgs	superantigens
ChoE	cholesterol oxidase exoenzyme
LAMP	loop-mediated isothermal amplification assays
O	Somatic antigen
Н	flagellar antigen
K	capsular antigen
CA-YE	Casamino acid-yeast extract- salts
TSBYE	Tryptic soy broth enriched with 0.6% yeast extract
PVC	polyvinyl chloride
OD	optical density
PBMCs	peripheral blood mononucleated cells

ETEC	Enterotoxigenic E. coli
EIEC	Enteroinvasive E. coli
VTEC	Verotoxin- producing E. coli
EPEC	Enteropathogenic E. coli
EAE	attaching-and-effacing factor
EAF	fimbrial adherence factor
XDR-TB	extensively drug-resistant tuberculosis
MDR-TB	multidrug-resistant tuberculosis
VRSA	vancomycin resistant Staphylococcus aureus
HIV	Human Immunodeficiency Virus

1. Introduction

Infectious upper respiratory disease (IURD) of horses has been a frequent problem. Risk factors for IURD include the season with a high transfer rate (summer and fall), the stabling period (≤ 3 months), and age (2 to 3 years old), suggesting that the movement and new environment may have depressed the immune system of the horses and decreased their ability to respond properly to pathogens. The bacterial strains isolated from IURD included Pseudomonas horses spp., Escherichia coli. Staphylococcus spp., Streptococcus equi subsp. equi and zooepidemicus (Ryu et al., 2011). Streptococcus equi is the etiologic agent of a highly infectious upper respiratory disease of horses known as strangles. Asymptomatic carriers in the population may result in the spread of disease via introduction of S. equi to native populations. Bacterial culture and polymerase chain reaction (PCR) of nasopharyngeal (NP) washes and guttural pouch (GP) lavages have been used for both diagnostic testing and for the detection of S. equi in clinical and carrier animals but no definitive or gold standard test method has been shown to be optimal (Timoney and Artiushin, 1997; Sweeney et al., 2005; Holland et al., 2006; Boyle et al., 2012).

Strangles is the main upper respiratory tract and a highly contagious disease of horses caused by Streptococcus equi ssp. equi (Libardoni et al., 2016). Clinical signs include fever, swollen lymph nodes of the head and neck, coughing, purulent nasal discharge and depression (Sweeney et al., 2005). Typical clinical signs are purulent nasal discharge, pyrexia, anorexia. The outcome is only rarely fatal due to complications (Sweeney et al., 2005). Complications include purpura hemorrhagica and metastatic abscessation. Control of outbreaks requires strict isolation protocols and hygiene measures. Detection of carriers is essential for preventing disease recurrence on a farm (Boyle, 2011). S. equi are β -hemolytic streptococci, belonging to Lancefield group C, and can be identified by conventional biochemical testing (Quinn et al., 1994) or by PCR. Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is generally considered a commensal and an opportunistic pathogen of the upper airways Establishing whether certain strains of S. zooepidemicus can cause upper respiratory disease as a host-specific pathogen of horses, and if there are certain genogroups of S. zooepidemicus that are more virulent than others is of major clinical importance (Lindahl et al., 2013). Transport for long periods frequently causes bacterial pneumonia in horses, the dominant pathogenic bacterium under being such circumstances Streptococcus equi subsp.

zooepidemicus (Oikawa et al., 1995). Other pathogens such as Escherichia coli became responsible for secondary bacterial pneumonia following the administration of antimicrobials 2000). The (Racklyeft and Love, mortality rate from pleuropneumonia and secondary bacterial pneumonia caused by these agents is high (Sweeney et al., 1985; Racklyeft and Love, 2000). Pneumonia is a major cause of disease and death in foals. Rhodococcus equi is considered the most important cause of pneumonia among foals between approximately 1 and 6 months of age (Prescott, 1991; Takai et al., 1999; Muscatello et al., 2007). The mortality rate of foals with clinical signs of pneumonia caused by R. equi is approximately 30% (Giguére, et al., 2004; Giguére, 2017). Rhodococcus equi, is a facultative intracellular pathogen and an important cause of pneumonia in foals, which is highly susceptible to killing by gentamicin in vitro (Burton et al., 2015). Susceptibility to *Rhodococcus equi* pneumonia in horses appears to be age-related. The disease occurs almost exclusively among foals, whereas adult horses or other species of animals generally do not develop signs of infection unless they are immune-compromised (Prescott, 1991; Takai, 1999; Muscatello et al., 2007). R. equi is an important pathogen of foals that causes severe pneumonia. There is no licensed vaccine effective against R. equi pneumonia of foals (Bordin et al., 2014). In equids,

susceptibility to disease caused by *Rhodococcus equi* occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases.

So the present study was performed to accomplish the following targets:

- 1) Isolation of bacterial causes from respiratory diseases in clinical, subclinical and carrier horses of different ages.
- 2) Identification of recovered microorganism by specific biochemical tests.
- 3) Serotyping of recovered microorganism
- 4) Virulence study for recovered microorganism
- 5) Application of antibiotic sensitivity testing against identified isolates to detect the multidrug resistant strain.

