

EFFECT OF NANO ADDITIVES ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE FUELLED WITH EDIBLE-NON-EDIBLE BIODIESEL FUELS

By

Mostafa Mohamed Abd-Elaziz Mahmoud

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

EFFECT OF NANO ADDITIVES ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE FUELLED WITH EDIBLE-NON-EDIBLE BIODIESEL FUELS

By

Mostafa Mohamed Abd-Elaziz Mahmoud

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Mohamed M. Ali Hassan Dr. Eslam Said Abd-Elghany

Professor of Mechanical Power
Engineering Dept.
Faculty of Engineering, Cairo University

Assistant Professor of Mechanical Power
Engineering Dept.
Institute of Aviation Engineering and
Technology

EFFECT OF NANO ADDITIVES ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE FUELLED WITH EDIBLE-NON-EDIBLE BIODIESEL FUELS

By

Mostafa Mohamed Abd-Elaziz Mahmoud

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

Approved by the Examining Committee	
Prof. Dr. Mohamed M. Ali Hassan	Thesis Main Advisor
Prof. Dr. Abdel-Hafez Hassanien Abdel-Hafez	Internal Examiner
Prof. Dr. Osama Ezzat Abdel-Latif - Prof. of Mechanical Power Engineering, Faculty of Engineering a	External Examiner at (Shoubra), Benha University

Engineer's Name: Mostafa Mohamed Abd-Elaziz Mahmoud

Date of Birth: 15 / 12 /1990 **Nationality:** Egyptian

E-mail: denlson11@hotmail.com

Phone: 01115087079

Address: 23d, Pyramids Gardens, Giza, Egypt

Registration Date: 1 / 10 / 2014 **Awarding Date:** / /2019 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Mohmed Mahmoud Ali Hassan

Dr. Eslam Said Abd-Elhgany

Ass.Prof. at Faculty of Engineering-Institute of Aviation

Engineering and Technology.

Examiners:

Prof. Dr. Moahmed Mahmoud Ali
Prof. Dr. Abdel-Hafez Hassanien
Prof. Dr. Osama Ezzat Abdel-Latif
Professor at Faculty of Engineering at (Shoubra), Benha

(Thesis main advisor)
(Internal examiner)

University.

Title of Thesis:

Effect of Nano Additives on Performance and Emission Characteristics of Diesel Engine Fueled with Edible-Non-Edible Biodiesel fuels.

Key Words:

Biodiesel – Nano-additives – Performance – Emission.

Summary:

The presented work introduces a performed study into the effect of adding nano particles to a various biodiesel fuels on performance and emission characteristics. The characteristics experimentally investigated on a single cylinder diesel engine test-bed at a speed of 1500 rpm and different engine load conditions. Diesel and biodiesel blends were prepared in volume percentage of 20% as (80% diesel+20% biodiesel) this blend investigated without additives and with different nano additives at different concentrations for a various types of biodiesel fuels.

Disclaimer

I hereby	declare	that thi	s thesis	is	my	own	original	work	and	that	no	part	of	it	been
submitted for	r a degree	e qualifi	cation a	t ar	ny ot	her u	niversity	or ins	titute	.					

I further declare that I have appropriately acknowledged all sources used and cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

First and above, all my thanks and my great acknowledgement to **Allah** for helping me in all my life. Praise is to **Allah**, who empowered me to complete my research and for guidance to bring it to light in such intended form.

I would like to express my grateful thanks and appreciation to **Prof. Dr. Mohamed Mahmoud Ali Hassan,** Professor of Mechanical Engineering Department, Faculty of Engineering, Cairo University, for suggesting the research point, direct supervision and assisting, helping, advising and supervising me during all the stages of this thesis. I am proud to work under such a distinguished scientist and teacher with whom I published the first paper in my career in an International Journal and registered patent from this thesis.

I would like to express my grateful thanks and appreciation to **Dr. Eslam Said Abd-Elghani**, Ass. Prof. of Mechanical Power Engineering Department, Institute of Aviation Engineering and Technology, for direct supervision, providing all financial facilities, helping, advising and gave me the opportunity to work with him.

I would like to express my grateful thanks and appreciation to **Dr. Mohammed Saber Mohamed Gad,** Researcher of Combustion, Mechanical Engineering Department, Engineering Research Division, National Research Centre, for direct supervision, providing all financial facilities, helping, advising and give me big experiences in Experimental work.

Also, my sincere thanks to all staff member of **Mechanical Engineering Department**, **Institute of Aviation Engineering and Technology** for supporting me during this work.

All my thanks are to **my father, mother, brothers, wife, son** and all **my family** for helping me and standing up behind me all the time to finish this work in a suitable form.

Table of Contents

ACI	KNOWLEDGMENTS	•••••	V	
TAI	BLE OF CONTENTS		VII	
LIS	T OF TABLES	•••••	X	
LIS	T OF FIGURES	•••••	XI	
NO	MENCLATURE	•••••	XIV	
ABS	STRACT		XV	
CH	APTER 1: INTRODUCTION		1	
1.1.	Introduction	1		
1.2.	LIQUID FUELS	1		
1.3.	CAPACITY FOR UTILIZING SUBSTITUTION FUELS	2		
1.4.	DIESEL ENGINES USING ALTERNATIVE FUELS	3		
1.5.	THE ORGANIZATION OF THESIS	4		
CH	APTER 2 : LITERATURE REVIEW	•••••	5	
2.1.	Introduction	5		
2.2.	USING VEGETABLE OILS AS ALTERNATIVE DIESEL	ENGINE FUELS	5	
2.3.	POTENTIAL FOR USING BIODIESEL AS ALTERNATI	VE DIESEL ENGINE FUEL	6	
2.4.	EFFECT OF BURNING JATROPHA BIODIESEL ON EN	GINE PERFORMANCE	6	
	2.4.1.Effect on engine thermal efficiency			6
	2.4.2.Effect on specific fuel consumption			7
	2.4.3.Effect on exhaust gas temperature			8
	2.4.4.Effect on air-fuel ratio			9
2.5.	EFFECT OF BURNING JATROPHA BIODIESEL ON EX	HAUST EMISSIONS	10	
	2.5.1.Effect on carbon monoxide emission			10
	2.5.2.Effect on carbon dioxide emission			11
	2.5.3.Effect on nitrogen oxide emission			11
	2.5.4.Effect on hydrocarbon emission			13
2.6	2.5.5.Effect on smoke emission			14
2.6.	EFFECT OF ADDING NANO ADDITIVES ON PERFOR			
	RACTERISTICS OF DIESEL ENGINE	14		
2.7.	THE OBJECTIVES OF THESIS	17	10	
	APTER 3 : BIODIESEL PRODUCTION PRO		18	
3.1.	Introduction	18		
3.2.	SEED PRETREATMENT	18		
	3.2.1.Seed cleaning			18
	3.2.2.Seed dehulling			19
	3.2.3.Crushing			19 19
	3.2.4.Flaking 3.2.5.Cooking			20
3.3.	JATROPHA OIL EXTRACTION TECHNIQUES	20	2	20
٠٠٠.	3.3.1.Mechanical extraction methods	20	,	20
3.4.	YIELD OF JATROPHA OIL	21	2	-0
3. 4 .	PRODUCTION OF BIODIESEL	21		
J.J.	3.5.1.Fatty acid composition in bio oil	21		22
	2.2.111 atty acta composition in oto on		4	

	3.5.2.Determination of FFA percentage in oil		22
	3.5.3.Single step base catalyzed transesterification		22
	3.5.4.Two step acid-base catalyzed transesterification		26
3.6.	BIODIESEL YIELD	26	
3.7.	BIODIESEL CHARACTERIZATION	27	
3.8.	BIODIESEL AND VEGETABLE OILS PHYSICAL PROPERTIES	27	
	3.8.1.Acid value		27
	3.8.2.Saponification value		28
	3.8.3.Iodine value		28
	3.8.4.Cloud point		28
	3.8.5.Cetane number		29
	3.8.6.Flash point		29
	3.8.7.Pour point		29
	3.8.8.Volatility		29
3.9.	BIODIESEL AND VEGETABLE OILS CHEMICAL PROPERTIES	30	
	3.9.1.Heating value		30
	3.9.2.Kinematic viscosity		30
	3.9.3.Density		30
	3.9.4.Distillation range		30
	3.9.5.Water content		31
3.10.	PHYSICAL AND CHEMICAL PROPERTIES OF BIODIESEL	31	
3.11.	BIODIESEL NANO BLENDS	32	
	3.11.1. Nano particles properties		32
	3.11.2. Preparation of biodiesel nano blends		34
CHA	APTER 4 : EXPERIMENTAL APPARATUS AND PI	ROCEDURES35	5
4.1.	Introduction	35	
4.2.	EXPERIMENTAL TEST RIG	35	
	4.2.1.Test engine		37
	4.2.2.Fuel system		38
	4.2.3.Fuel flow rate measurement		39
	4.2.4.Air induction system		39
	4.2.5.Intake air flow rate measurement		39
	4.2.6.Engine speed measurement		40
	4.2.7.Exhaust emissions analysis		41
	4.2.8.Smoke opacity		42
4.3.	ENGINE LOAD	43	
4.4.	EXPERIMENTAL TEST PROCEDURES	45	
CHA	APTER 5 : RESULTS AND DISCUSSIONS	46	6
5.1.	Introduction	46	
5.2.	CHARACTERISTICS OF J20 WITH CNTs COMPARED TO D1	100 46	
	5.2.1.Performance characteristics		46
	5.2.2.Emission characteristics		51
5.3.	Characteristics of J20 with TiO_2 compared to D10	00 57	
	5.3.1.Performance characteristics		57
	5.3.2.Emission characteristics		62
5.4.	$5.3.2. Emission\ characteristics \\ Characteristics\ of\ J20\ with\ AL_2O_3\ compared\ to\ D$	100 68	62

	5.4.2.Emission characteristics	73
5.5.	COMPARISON OF DIESEL ENGINE PERFORMANCE FOR J20 WITH	CNTs, TiO ₂ AND AL ₂ O ₃
		79
5.6.	COMPARISON OF DIESEL ENGINE EMISSIONS FOR J20 WITH CN	Γ S, T I O 2 AND A L2 O 3
80		
5.7.	CHARACTERISTICS OF C20 WITH CNTS COMPARED D100	80
	5.7.1.Performance characteristics	80
	5.7.2.Emission characteristics	85
5.8.	CHARACTERISTICS OF C20 WITH TIO2 COMPARED D100	91
	5.8.1.Performance characteristics	91
	5.8.2.Emission characteristics	96
5.9.	Characteristics of C20 with AL_3O_2 compared to D100	102
	5.9.1.Performance characteristics	102
	5.9.2.Emission characteristics	107
5.10.	COMPARISON OF DIESEL ENGINE PERFORMANCE OF C20 WITH	CNTs, TiO_2 AND AL_2O_3
		113
5.11.	COMPARISON OF DIESEL ENGINE EMISSIONS FOR C20 WITH CN	TS, TIO_2 AND AL_2O_3
		114
5.12.	Characteristics of W20 with CNTs compared to D100	114
	5.12.1. Performance characteristics	114
	5.12.2. Emission characteristics	119
5.13.	Characteristics of W20 with TiO_2 compared to D100	125
	5.13.1. Performance characteristics	125
	5.13.2. Emission characteristics	130
5.14.	Characteristics of W20 with Al_2O_3 compared to D100	136
	5.14.1. Performance characteristics	136
	5.14.2. Emission characteristics	141
5.15.	COMPARISON OF DIESEL ENGINE PERFORMANCE FOR W20 WITH	H CNTs, TiO_2 and
AL_2O	3 COMPARED TO D100 147	
5.16.	COMPARISON OF DIESEL ENGINE EMISSIONS FOR W20 WITH CN	NTS , TIO_2 AND AL_2O_3
COMP	ARED TO D100 148	
CHA	APTER 6 : CONCLUSIONS AND RECOMMENDATION	S149
6.1.	USING OF CNTs 149	
6.2.	USING OF TiO_2 150	
6.3.	Using of AL_2O_3 150	
6.4.	RECOMMENDATIONS FOR FUTURE WORK 151	
REF	ERENCES	155
APP	ENDIX A: PAPER PUBLISHED FROM THIS THESIS	162
APP	ENDIX B: UNCERTAINTY ANALYSIS	163

List of Tables

Table 3.1 Physical and chemical properties of biodiesel blends compared to die	esel fuel
and ASTM standards [111]	32
Table 3.2 Nano-particles properties.	33
Table 4.1 Diesel engine technical specifications.	37
Table 4.2 Digital photo laser tachometer specifications	40
Table 4.3 Exhaust gas analyzer specifications	42
Table 4.4 Specifications of OPA-100 smoke meter	43
Table 5.1 Comparison of diesel engine performance for J20 with CNTs	51
Table 5.2 Comparison of diesel engine emissions for J20 with CNTs	
Table 5.3 Comparison of diesel engine performance for J20 with TiO ₂	62
Table 5.4 Comparison of diesel engine emissions for J20 with TiO ₂	68
Table 5.5 Comparison of diesel engine performance for J20 with Al ₂ O ₃	73
Table 5.6 Comparison of diesel engine emissions for J20 with Al ₂ O ₃	
Table 5.7 Comparison of diesel engine performance for J20 with CNTs, TiO ₂ a	and Al_2O_3 .
Table 5.8 Comparison of diesel engine emissions for J20 with CNTs, TiO2 and	
Table 5.9 Comparison of diesel engine performance for C20 with CNTs	
Table 5.10 Comparison of diesel engine emissions for C20 with CNTs	
Table 5.11 Comparison of diesel engine performance for C20 with TiO ₂	
Table 5.12 Comparison of diesel engine emissions for C20 with TiO ₂	
Table 5.13 Comparison of diesel engine performance for C20 with Al ₂ O ₃	
Table 5.14 Comparison of diesel engine emissions for C20 with Al ₂ O ₃	
Table 5.15 Comparison of diesel engine performance for C20 with CNTs, TiO2	
Table 5.16 Comparison of diesel engine emissions for C20 with CNTs, TiO2 are	
Table 5.17 Comparison of diesel engine performance for W20 with CNTs	
Table 5.18 Comparison of diesel engine emissions for W20 with CNTs	
Table 5.19 Comparison of engine performance for W20 with TiO ₂	
Table 5.20 Comparison of diesel engine emissions for W20 with TiO ₂	
Table 5.21 Comparison of diesel engine performance for W20 with Al ₂ O ₃	
Table 5.22 Comparison of diesel engine emissions for W20 with Al ₂ O ₃	
Table 5.23 Comparison of diesel engine performance for W20 with CNTs, TiO	
Table 5.24 Comparison of diesel engine emissions for W20 with CNTs, TiO ₂ a	
	148

List of Figures

rig. 2.1 Variation of brake thermal efficiency with engine load [16]	/
Fig. 2.2 Variation of B.S.F.C with engine load [16]	8
Fig. 2.3 Variation of E.G.T with engine load [16]	9
Fig. 2.4 Variation of CO emission with engine load [16]	
Fig. 2.5 Variation of CO ₂ emissions with engine load [16]	
Fig. 2.6 Variation of NO _x emission with engine load [16]	
Fig. 2.7 Variation of HC emission with engine load [16]	
Fig. 3.1 Jatropha tree and its seeds [76]	
Fig. 3.2 Jatropha seeds pretreatment and oil extraction [76].	19
Fig. 3.3 A photographic view of a mechanical screw press [76]	21
Fig. 3.4 Transesterification process layout.	
Fig. 3.5 Settling and separation of biodiesel.	
Fig. 3.6 Washing of biodiesel.	
Fig. 3.7 Scanning Electron Microscopy image of CNTs, TiO ₂ and Al ₂ O ₃	
Fig. 3.8 Transition Electron Microscopy image of CNTs	
Fig. 3.9 Some samples of nano blended biodiesel fuels.	
Fig. 4.1 Schematic diagram and specifications of the test engine.	
Fig. 4.2 Engine test rig.	
Fig. 4.3 Diesel engine.	
Fig. 4.4 Fuel and exhaust temperature measurement.	
Fig. 4.5 Orifice dimensions.	
Fig. 4.6 Used orifices.	
Fig. 4.7 Intake air tank.	
Fig. 4.8 Digital tachometer.	
Fig. 4.9 Exhaust gas analyzer layout.	
Fig. 4.10 Gas analyzer probe.	
Fig. 4.11 Smoke analyzer	
Fig. 4.12 Variable load connections.	
Fig. 4.13 Variable load control system.	
Fig. 5.1 Variation of brake specific fuel consumption with engine load	
Fig. 5.2 Variation of brake thermal efficiency with engine load	
Fig. 5.3 Variation of exhaust gas temperature with engine load	
Fig. 5.4 Variation of air-fuel ratio with engine load.	
Fig. 5.5 Variation of CO emission with engine load.	
Fig. 5.6 Variation of CO ₂ emissions with engine load.	
Fig. 5.7 Variation of NO _x emission with engine load	
Fig. 5.8 Variation of HC emission with engine load.	55
Fig. 5.9 Variation of smoke emission with engine load.	
Fig. 5.10 Variation of brake specific fuel consumption with engine load	58
Fig. 5.11 Variation of brake thermal efficiency with engine load	59
Fig. 5.12 Variation of exhaust gas temperature with engine load	60
Fig. 5.13 Variation of air-fuel ratio with engine load.	61
Fig. 5.14 Variation of CO emission with engine load	63
Fig. 5.15 Variation of CO ₂ emissions with engine load	64
Fig. 5.16 Variation of NOx emission with engine load.	
Fig. 5.17 Variation of HC emission with engine load	
Fig. 5.18 Variation of smoke emission with engine load	
Fig. 5.19 Variation of brake specific fuel consumption with engine load	

Fig. 5.20 Variation of brake thermal efficiency with engine load	70
Fig. 5.21 Variation of exhaust gas temperature with engine load	71
Fig. 5.22 Variation of air-fuel ratio with engine load.	72
Fig. 5.23 Variation of CO emission with engine load.	74
Fig. 5.24 Variation of CO ₂ emissions with engine load.	75
Fig. 5.25 Variation of NOx emission with engine load.	76
Fig. 5.26 Variation of HC emission with engine load.	
Fig. 5.27 Variation of smoke emission with engine load.	
Fig. 5.28 Variation of brake specific fuel consumption with engine load	
Fig. 5.29 Variation of brake thermal efficiency with engine load	
Fig. 5.30 Variation of exhaust gas temperature with engine load	
Fig. 5.31 Variation of air-fuel ratio with engine load.	
Fig. 5.32 Variation of CO emission with engine load.	
Fig. 5.33 Variation of CO ₂ emissions with engine load.	
Fig. 5.34 Variation of NOx emission with engine load.	
Fig. 5.35 Variation of HC emission with engine load.	
Fig. 5.36 Variation of smoke emission with engine load.	
Fig. 5.37 Variation of brake specific fuel consumption with engine load	
Fig. 5.38 Variation of brake thermal efficiency with engine load.	
Fig. 5.39 Variation of exhaust gas temperature with engine load.	
Fig. 5.40 Variation of air-fuel ratio with engine load.	
Fig. 5.41 Variation of CO emission with engine load.	
Fig. 5.42 Variation of CO ₂ emissions with engine load.	
Fig. 5.43 Variation of NO _x emission with engine load.	
Fig. 5.44 Variation of HC emission with engine load.	
Fig. 5.45 Variation of smoke emission with engine load.	
Fig. 5.46 Variation of brake specific fuel consumption with engine load	
Fig. 5.47 Variation of brake thermal efficiency with engine load	
Fig. 5.49 Variation of air-fuel ratio with engine load.	
Fig. 5.50 Variation of CO emission with engine load	
C C	
Fig. 5.52 Variation of NO _x emission with engine load.	
Fig. 5.53 Variation of HC emission with engine load	
Fig. 5.54 Variation of smoke emission with engine load.	
Fig. 5.55 Variation of brake specific fuel consumption with engine load	
Fig. 5.56 Variation of brake thermal efficiency with engine load.	
Fig. 5.57 Variation of exhaust gas temperature with engine load	
Fig. 5.58 Variation of air-fuel ratio with engine load.	
Fig. 5.59 Variation of CO emission with engine load.	
Fig. 5.60 Variation of CO ₂ emissions with engine load	
Fig. 5.61 Variation of NO _x emission with engine load	
Fig. 5.62 Variation of HC emission with engine load.	
Fig. 5.63 Variation of smoke emission with engine load	
Fig. 5.64 Variation of brake specific fuel consumption with engine load	
Fig. 5.65 Variation of brake thermal efficiency with engine load	
Fig. 5.66 Variation of exhaust gas temperature with brake power	
Fig. 5.67 Variation of air-fuel ratio with engine load.	
Fig. 5.68 Variation of CO emission with engine load.	
Fig. 5.69 Variation of CO ₂ emissions with engine load.	32
Fig. 5.70 Variation of NO _x emission with engine load	
Fig. 5.71 Variation of HC emission with engine load.	34

Fig. 5.72 Variation of smoke emission with engine load	135
Fig. 5.73 Variation of brake specific fuel consumption with engine load	137
Fig. 5.74 Variation of brake thermal efficiency with engine load	138
Fig. 5.75 Variation of exhaust gas temperature with engine load	139
Fig. 5.76 Variation of air-fuel ratio with engine load	140
Fig. 5.77 Variation of CO emission with engine load	142
Fig. 5.78 Variation of CO ₂ emissions with engine load	143
Fig. 5.79 Variation of NO _x emission with engine load	144
Fig. 5.80 Variation of HC emission with engine load	145
Fig. 5.81 Variation of HC emission with engine load	146

Nomenclature

Symbol	Meaning	Units
A/F	Air/fuel mass ratio	
BSFC	Brake specific fuel consumption	kg/kW h
BTE	Brake thermal efficiency	%
CO	Carbon monoxide	%
CO_2	Carbon dioxide	%
EGT	Exhaust gas temperature	K
HC	Hydrocarbons	ppm
NO_X	Nitric oxide and nitrogen dioxide	ppm
RPM	Revolution per minute	rpm
D100	pure diesel oil	
JME	Jatropha methyl ester	
CME	Corn methyl Easter	
WME	Waste cooking oil methyl Easter	
J20	mixture fuel containing 20% JME + 80%	D100
J100	mixture fuel containing 100% JME + 0%	D100
C20	mixture fuel containing 20% CME + 80%	
C100	mixture fuel containing 100% CME + 0%	
W20	mixture fuel containing 20% WME + 80%	
W100	mixture fuel containing 100% WME + 09	% D100
CNTs	Multi walled carbon nano tubes	
TiO_2	Titanium oxide nano particle	
Al_2O_3	Aluminum oxide nano particle	
J20C25,50,100	CNTs with mass fraction 25, 50, 100 ppm	
J20T25,50,100	TiO ₂ with mass fraction 25, 50, 100 ppm	
J20A25,50,100	Al ₂ O ₃ with mass fraction 25, 50, 100 ppm	
C20C25,50,100	CNTs with mass fraction 25, 50, 100 ppm	
C20T25,50,100	TiO ₂ with mass fraction 25, 50, 100 ppm	
C20A25,50,100	Al ₂ O ₃ with mass fraction 25, 50, 100 ppm	
W20C25,50,100	CNTs with mass fraction 25, 50, 100 ppm	
W20T25,50,100	TiO ₂ with mass fraction 25, 50, 100 ppm	
W20A25,50,100	Al ₂ O ₃ with mass fraction 25, 50, 100 ppm	mixed with W20
SEM	Scanning Electron Microscopy	
TEM	Transmission Electron Microscope	
ASTM	American Society for Testing and Materia	als

Abstract

There is a heavy dependence on fossil fuels for energy production. This are not only depletable but also is the main cause of harmful emissions and global warming. Renewable energy and biofuels can play significant role in this concern. The increasing demand and consumption growth rates of diesel fuel together with environmental concerns, directed attention for use of non-edible oils such as jatropha oil and waste cooking oil as alternative biofuels in diesel engines.

Mechanical pressing was deployed to extract oil from jatropha seeds. Screw press extraction method was used to extract oil at extraction temperature of 100 °C and motor speed of 60 rpm. Screw press produces higher oil yield from the seeds of up to 20%.

A two-stage process is used for the esterification of the jatropha oil. The first is called esterification, and this is used to reduce the free fatty acid content in jatropha oil. The second stage called transesterification. On the other hand, only transesterification process is used for the esterification of the corn oil and waste cooking oil. Biodiesel from three different feed stocks (jatopha, corn and waste cooking oil) are mixed with diesel in different proportions to form different blends such as J20 (20% JME and 80% diesel), C20 (20% CME and 80% diesel) and W20 (20% WME and 80% diesel). The final biodiesel product properties were measured according to American Society for Testing and Materials (ASTM) standard in Central labs, Egyptian Petroleum Research Institute, Egypt.

Nanotech Egypt Company supplies three different nano additives (CNTs, TiO₂ and Al₂O₃) in the mass fractions of 25, 50 and 100 ppm which were mixed with produced biodiesel blends. Mechanical dispersion was used to prepare the homogeneous fuel mixture as well as to dismantle the agglomeration of nano particles. Then, biodiesel nano blends were kept in an ultrasonic bath set at a frequency of 24 kHz for 30 min to enhance the stability of the fuel blend. Scanning electron microscopy (SEM) provides direct examination of nano particles alignment and its size and also investigates the morphology of nano particles. Surface and morphological characterization of nano particles were carried out using Transmission Electron Microscope (TEM).

A single cylinder diesel engine (DEUTZ F1L511) has been employed as the test engine in the present work. The engine was equipped with all the necessary instruments to measure different engine parameters. AC generator of maximum electric power output of 4.5 kW has been coupled directly to the test engine. An external controllable electric load bank with variable loads is established for measurement of engine loads from 0 to full load. Engine performance and exhaust emissions were tested by burning diesel, biodiesel (J20, C20 and W20) and their nano blends with nano additives (CNTs, TiO₂ and Al₂O₃) at different concentrations of (25, 50 and 100 ppm).

The results of performance parameters and exhaust emission are based on the study are thermal efficiency, specific fuel consumption, exhaust gas temperature, air fuel ratio, CO, CO_2 , HC, NO_x emissions and smoke opacity.

The W20T100 blended fuel attained a maximum increase of 14.4% in the brake thermal efficiency and a decrease of 11.6% in the brake specific fuel consumption at the dose level of 100 mg/l compared to D100. According to the measured emissions, a significant reduction of engine emissions was achieved at the dose level of 100 mg/l, where NOx, CO, and HC were reduced by 54.5%, 36.4%, and 11.1%, respectively for W20T100 compared to D100. According to the obtained results, the recommended concentration of TiO₂ in W20 was concluded to be 100 mg/l, which could give significant improvements in overall the parameters of engine performance and emissions with a good balance between them compared to D100.