

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

INVESTIGATION OF NOVEL DIRECTIONAL PROTECTION TECHNIQUES BASED ON CURRENT ONLY MEASUREMENTS

by

Bishoy Nabil Abdalla Habib

A thesis submitted to the faculty of engineering

Ain Shams University
in partial fulfilment of the requirements for the degree of

Master of Science

in

Power and Electrical Machines Engineering Faculty of Engineering, Ain Shams University

Supervised By

Dr. Amr Magdy Abdin Prof. Dr. Soliman M. El Debeiky

Cairo, 2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Investigation of novel directional protection techniques based on current only measurements

By

Bishoy Nabil Abdalla Habib

Faculty of Engineering, Ain Shams University

Examiners' Committee

Name and Affiliation

Signature

Prof. Dr. Ahdab M. K. El-Morshedy Faculty of Engineering, Cairo University

Prof. Dr. Almoataz Y. Abdelaziz Faculty of Engineering, Ain Shams University

Prof. Dr. Soliman M. El Debeiky Faculty of Engineering, Ain Shams University

Statement

This thesis is submitted as partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Bishoy Nabil Abdalla

Signature

Researcher Data

Name : Bishoy Nabil Abdalla Habib

Date of birth : 5/5/1988

Place of birth : Cairo, Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of specialization : Power and Electrical Machines

University issued the degree : Ain Shams University

Date of issued degree : June 2011

ABSTRACT

Directional protection is essential in transmission, sub-transmission and distribution, especially after the impact of high penetration of distributed generators and its integration in the networks that leads to bidirectional in power flow and fault current.

Traditional directional relays have used a voltage signal as a polarizing quantity which may be unreliable in cases of close-in faults and absence of potential transformer in distribution networks.

In this thesis, an investigation of novel directional relaying techniques which require only current measurement from current transformers and eliminate the use of the bulky and costly potential transformers associated with the type of protection in the traditional directional relays is presented.

Novel directional protection algorithms have been investigated, proposed and demonstrated. The new algorithms use only pre-fault and post-fault current signals for determining the fault direction excluding the need for voltage signals. The first method depends on the change in current phase angle before and after fault, the second method utilizes the post-fault current not only as a reference, but also as a polarizing quantity, whereas the third method is based on diagnosing of current waveform slope rise and Lissajous curves for detection of the fault and its direction respectively.

This thesis also presents a comparative performance study of the suggested techniques at different fault conditions.

Further, the investigated techniques are applied to actual data extracted from a digital protection relay, existing in the distribution network of Maadi, Cairo during a forward fault. Furthermore, these techniques are compared with experimental laboratory results for a reverse fault case.

The results of the investigated methods well agree with the actual measurements.

Keywords: Current only directional protection, Phase angle comparator, Prefault current, Post fault current

SUMMARY

This thesis demonstrates an investigation and a comparative study between current only directional protection techniques. The thesis is divided into six chapters, it is organized as follows

Chapter 1 is an introduction to the thesis, it provides research objectives and discusses the thesis structure.

Chapter 2 provides a brief overview of the most common applications of directional overcurrent relays. In addition to the theories and principles of different directional protection methods.

Chapter 3 introduces the suggested current only directional techniques including basic equations, diagrams and flowcharts to illustrate these techniques in details.

Chapter 4 shows the performance of the proposed directional algorithms and its corresponding simulation results at different fault scenarios. It has been evaluated and tested using PSCAD / EMTDC and MATLAB tools.

Chapter 5 focuses on the application of the suggested methods to actual data obtained from digital relays to verify the validity of these methods and study their efficiency in a real network in order to confirm theoretical and simulation studies.

Chapter 6 summarizes the advantages of the proposed techniques and it includes a conclusion, as well as a suggestion for future work.

DEDICATION

I wish to thank my family for their patience, love and support during the years of my studies.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God Almighty for granting me the capability to proceed successfully, I would like to sincerely thank my supervisors Prof. Dr. Soliman M. El Debeiky and Dr. Amr Magdy for giving me the opportunity to work on my master thesis in their research group, I want to thank them for the valuable advice, continuous guidance and patient encouragement.

Finally, I express my deepest gratitude to my parents for their love, support and patience.

TABLE OF CONTENTS

ABS	TRAC	CT	i
ACK	NOW	/LEDGEMENTS	v
LIST	OF T	TABLES	⁄iii
LIST	OF F	FIGURES	ix
LIST	OF A	ABBREVIATIONS	xii
LIST	OF S	SYMBOLS	κiii
1	INTE	RODUCTION	1
	1.1 1.2 1.3 1.4	General Background Problem Definition Research Objectives Thesis Outline	2
2	LITE	ERATURE REVIEW	5
	2.12.22.3	Applications of Directional Overcurrent Relays	5 7 8
3	CUR	RENT ONLY SUGGESTED TECHNIQUES	15
	3.1 3.2 3.3	Algorithm A Algorithm B Algorithm C	.20
4	SIM	ULATION RESULTS	.28
	4.1 4.2	System Description	.29 .31