Quality Control of Olive Leaf Extract and Discrimination between Different Cultivars Cultivated in Egypt Using Multivariate Data Analysis

A thesis submitted to

Faculty of Pharmacy, Ain Shams University

In Partial Fulfilment of the Requirements for the Degree of

Master in Pharmaceutical Sciences (Pharmacognosy)

By

Eman Mahmoud Ibrahim Kabbash

Bachelor Degree of Pharmaceutical Science (2012) Faculty of Pharmacy, Ain Shams University

Under the supervision of

Sherweit Hamed El Ahmady, Ph.D.

Professor of Pharmacognosy Faculty of Pharmacy, Ain Shams University

Zeinab Talat Abd El Shakour, Ph.D.

Associate Professor of Pharmacognosy National Organization for Drug Control and Research

Iriny Mohsen Mansour Ayoub, Ph.D.

Lecturer of Pharmacognosy
Faculty of Pharmacy, Ain Shams University

Department of Pharmacognosy Faculty of Pharmacy, Ain Shams University Cairo, Egypt (2019)

Acknowledgments

In the beginning, I would like to thank Allah; without His virtue, I would have never been able to accomplish this work. Thanks Allah for giving me knowledge that I pray I could get a chance to pass on to others.

I would like to express my gratitude to my supervisors: **Prof. Sherweit El-Ahmady,** Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for the encouragement, the help and being the reason to love Phytochemistry, since I was a college student. **Assoc. Prof. Dr. Zeinab Talat**, Associate Professor of Pharmacognosy, National Organization for Drug Control and Research, for her continuous encouragement, unlimited help and scientific support throughout this work especially in the LC/MS data analysis part. **Dr. Iriny Ayoub**, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for her great effort and patience for supervising this work. No words can express how thankful I am to all of you.

Members, colleagues and professors of the Department of Pharmacognosy, Ain Shams University. **Dr. Haidy Gad** for her help with the chemometrics work and support. My deep thanks to **Dr. Abdul-Rahman Roshan**; who never held back any information, especially in the multivariate data analysis part.

Members, colleagues and professors at the National Organization for Drug Control and Research. My indefinite thanks to **Dr. Amal Koura**; Former Head of Phytochemistry Laboratory at (NODCAR), for her continuous encouragement and great support.

Greatest thankful are also due to **Prof. Michael Wink**, Professor of Biology, Head of Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany, for hosting LC/MS analysis in his laboratory.

. My family and my greatest support. I would like to thank my mother for the endless support, love, care and nourishment she has always been a true helping hand throughout my life may god bless her. I'd like to thank my husband for being my backbone, understanding and extremely supportive. I'd like to thank my brother for being my true guidance, he is not only my brother he has been the father figure in my life.

Finally, I would like to dedicate this thesis to my late Father, may his soul rest in peace.

Table of Contents

List of Tables	iii
List of Figures	iv
List of Abbreviations	viii
Introduction	1
Aim of work	4
Review of Literature	5
A. Reported phytochemical constituents in O. europaea L.	5
1. Secoiridoids reported in Olea europaea L.	5
2. Phenolic compounds reported in Olea europaea L	7
3. Lignans reported in Olea europaea L.	8
4. Triterpenes reported in Olea europaea L	9
5. Miscellaneous compounds	10
B. Biological activities reported for O. europaea L	19
Taxonomy	24
Materials and Methods	30
A. Materials	30
1. Plant Material	30
2. Reagents, Solvents and Apparatus	30
2.1. Extracts preparation	30
2.3. Polyphenols assay	31
2.4. Flavonoids assay	31
2.5. HPLC assay	31
2.6. HPLC-PDA-ESI/MS/MS analysis	31
2.7. In-vitro assay of antioxidant activity	31
3. Authentic Reference Standards	32
4. Software	32
B. Methods	32
1. Extracts preparation	32

2. Phytochemical analysis	.32
2.1. Ultraviolet Spectroscopic Analysis for O. europaea L. Cultivars Leaf Extracts	.32
2.2. Quantitative Determination of Total Polyphenol Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.33
2.3. Quantitative Determination of Total Flavonoid Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.34
2.4. HPLC Assay of Oleuropein Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.34
2.5. HPLC-PDA-ESI/MS/MS Based Metabolomics of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.35
3. <i>In vitro</i> Assay of Antioxidant Activities of <i>O. europaea</i> L. Cultivars Leaf Extracts by DPPH Radical Scavenging Method	.36
Results and Discussion	
Part 1: Phytochemical Analysis	.38
Chapter 1: Ultraviolet Spectroscopic Analysis for O. europaea L. Cultivars Leaf Extracts	.38
Chapter 2 : Quantitative Determination of Total Polyphenol Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.43
Chapter 3 : Quantitative Determination of Total Flavonoid Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.48
Chapter 4: HPLC Assay of Oleuropein Content of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.54
Chapter 5: HPLC-PDA-ESI/MS/MS Based Metabolomics of <i>O. europaea</i> L. Cultivars Leaf Extracts in Autumn and Spring	.59
Part 2: In vitro Assay of Antioxidant Activities of O. europaea L. Cultivars Leaf Extracts by DPPH Radical Scavenging Method	.89
Conclusions	.95
Recommendations	.97
Summary	.98
References 1	.03
Appendix	••••
Arabic summary	

List of Tables

Table 1: Traditional uses of <i>O. europaea</i> L. different parts
Table 2: Iridoids, secoiridoids and secoiridoid glycosides reported in O. europaea L. various
parts6
Table 3: Main phenolic compounds in <i>Olea europaea</i> L. different parts
Table 4: Main lignans identified in <i>Olea europaea</i> L. various parts
Table 5: Triterpenes identified in O. europaea L. various parts
Table 6: Miscellaneous compounds isolated from O. europaea L
Table 7: Antimicrobial activities of <i>O. europaea</i> L. leaf extracts21
Table 8: O. europaea L. different cultivar included in this study25
Table 9: Name, code and origin of <i>O. europaea</i> L. different cultivars30
Table 10: Absorbance of gallic acid standard solutions different concentrations at 760 nm44
Table 11: Total polyphenol concentration (mg/mL) of the olive leaf extracts collected in
autumn and spring45
Table 12: Total polyphenol contents of each extract in mg/g extract in autumn and spring46
Table 13: The absorbance of rutin standard solutions of different concentration at 415 nm49
Table 14: Total flavonoid concentration (mg/mL) of the olive leaf extracts collected in
autumn and spring
Table 15: The total flavonoid contents of each extract in mg/g extract50
Table 16: Oleuropein standard solutions different concentrations and their measured peak
areas at 280 nm55
Table 17: Oleuropein content in mg/mL of each extract collected in autumn and spring55
Table 18: Oleuropein content in mg/100 g dried extract in autumn and spring56
Table 19: Metabolites identified by HPLC-PDA-ESI/MS/MS analysis of O. europaea L. leaf
extracts in negative and positive ionization modes
Table 20: The distribution of the identified compounds in the twelve olive leaf cultivars
collected in autumn and spring
Table 21: The % inhibition of the DPPH free radical of Olea europaea L. different cultivars
in autumn and spring89

List of Figures

Figure 1: Iridoid and secoiridoid compounds in <i>O.europaea</i> L. various parts11
Figure 2: phenolic acids, coumarins and simple phenolic compounds identified in O.
europaea L. various parts
Figure 3: Main flavonoids identified in O. europaea L. various parts
Figure 4: Lignans identified in O. europaea L. various parts
Figure 5: Triterpenes identified in O. europaea L. various parts
Figure 6: Miscellaneous compounds identified in O. europaea L. various parts18
Figure 7: (A) Photograph of O. europaea L. tree (0.02X)
Figure 8: O. europaea L. leaf of different cultivars included in this study
Figure 9: UV absorbance spectra over the range 250-400 nm for the twelve different olive
leaf extracts collected in autumn
Figure 10: UV absorbance spectra over the range 250-400 nm for the twelve different olive
leaf extracts collected in spring
Figure 11: Score plot of PC1 and PC2 for the twelve olive leaf extracts collected in autumn
based on their UV scan. Egyptian cultivars in red; Spanish cultivars in green; Greek cultivars
in blue and Italian cultivar in brown41
Figure 12: Score plot of PC1 and PC2 for the twelve olive leaf extracts collected in spring
based on their UV scan. Egyptian cultivars in red; Spanish cultivars in green; Greek cultivars
in blue and Italian cultivar in brown41
Figure 13: Score plot of PC1 and PC2 for all olive leaf extracts collected in autumn and spring
based on their UV scan
Figure 14: Calibration curve of gallic acid standard used for the assay of polyphenols in olive
leaf extracts
Figure 15: Total polyphenol contents for olive leaf different cultivars in autumn and spring 46
Figure 16: Standard calibration curve of rutin used for the assay of total flavonoids in olive
leaf extracts
Figure 17: Total flavonoid contents for olive leaf different cultivars in both seasons51
Figure 18: The score plot (A) and loading plot (B) of olive leaf autumn extracts using UV
scan, TF and PPh content as variables. Egyptian cultivars in red; Spanish cultivars in green;
Greek cultivars in blue and Italian cultivar in brown

Figure 19: The score plot (A) and loading (B) plot of olive leaf spring extracts using UV
scan, TF and Pph content as variables. Egyptian cultivars in red; Spanish cultivars in green;
Greek cultivars in blue and Italian cultivar in brown
Figure 20: The standard calibration curve of oleuropein
Figure 21: Oleuropein contents for olive leaf different cultivars in autumn and spring57
Figure 22: Proposed fragmentation pathways of oleuropein aglycone
Figure 23: ESI-MS/MS spectrum of oleuropein-O-deoxyhexoside (23) in the negative ion
mode
Figure 24: Proposed fragmentation pathways of luteolin as a representative to flavones70
Figure 25: Proposed fragmentation pathways of kaempferol as representative to flavonols71
Figure 26: ESI-MS/MS spectrum of compound (24), unknown-C-glycoside in the negative
ion mode72
Figure 27: Proposed fragmentation pattern of pentacyclic triterpenes
Figure 28: Representative LC/MS base peak chromatograms of olive leaf extracts analysed in
negative ionization mode
Figure 29: Total ion chromatogram of the twelve olive leaves cultivars collected in autumn
(A) and spring (B), in the negative ionization mode
Figure 30: Principal Component Analysis of different olive cultivars leaves collected in
autumn derived from the negative ionization mode HPLC/ESI/MS-MS data (m/z 100-1000);
showing the score plot (A) and the loading plot (B) for the Egyptian, Spanish, Greek and
Italian cultivars
Figure 31: Principal Component Analysis of different olive cultivars leaves collected in
autumn after removing MAN cultivar; showing the score plot (A) and the loading plot (B) for
the Egyptian, Spanish, Greek and Italian cultivars87
Figure 32: Principal Component Analysis of different olive cultivars leaves collected in
spring derived from the negative ionization mode HPLC/ESI/MS-MS data (m/z 100-1000);
showing the score plot (A) and the loading plot (B) for the Egyptian, Spanish, Greek and
Italian cultivars
Figure 33: The % inhibition of the DPPH free radical for autumn and spring olive leaf
extracts different cultivars90
Figure 34: HCA (A), PCA score plot (B) and loading plot (C) based on UV spectroscopy, TF,
PPh, oleuropein content and DPPH assays for the twelve olive cultivars collected in autumn.
Egyptian cultivars in red; Spanish cultivars in green; Greek cultivars in blue and Italian
cultivar in brown 92

Figure 35: HCA (A), PCA score plot (B) and loading plot (C) based on UV spectroscopy, TF,
PPh, oleuropein content and DPPH assays for the twelve olive cultivars collected in spring.
Egyptian cultivars in red; Spanish cultivars in green; Greek cultivars in blue and Italian
cultivar in brown93
Figure 36: PCA score plot (A) and loading plot (B), showing discrimination of all the extracts
into two groups one for autumn (blue colour) and the other for spring (orange colour)94

List of Abbreviations

List of Abbreviations				
Abbreviation				
ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)			
AE	Autumn extracts			
ANN	Artificial Neural Networks			
BBCE	Bovin brain capillary endothelial cells			
BHT	Butylated hydroxy toluene			
DPPH	2,2-diphenyl-1-picrylhydrazyl			
EDA	Exploratory Data Analysis			
EIC	Extracted ion chromatogram			
ESI	Electospray ionization			
EVOO	Extra virgin olive oil			
FA	Factor analysis			
GC/MS	Gas chromatography coupled to mass spectrometry			
HCA	Hierarchical Cluster Analysis			
HPLC	High performance liquid chromatography			
HPLC/ESI-	High-performance liquid chromatography-electrospray ionisation tandem			
MS/MS	mass spectrometry			
HPLC/UV-vis	High performance liquid chromatography with ultraviolet visible detector			
HRI	Horticulture Research Institute			
KNN	k-nearest neighbours			
LC/MS	Liquid chromatography/Mass spectrometry			
LDA	Linear Discriminate Analysis			
MVA	Multivariate analysis			
NMR	Nuclear magnetic resonance			
OLE	Olive leaf extract			
PCA	Principal Component Analysis			
PCR	Principal Component Regression			
PDO	Protected designation of origin			
PGI	Protected geographical origin			
PLS	Partial Least Square			
PLS-DA	Partial Least Squares Discriminate Analysis			
PPh	Polyphenol content			
RDA	Retro-Diels-Alder reaction			
SE	Spring extracts			
SIMCA	Soft Independent Modelling of Class Analogy			
TF	Total flavonoids			
TIC	Total Ion Chromatogram			
Trolox	6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid			
UPLC-QTOF-MS				
	mass spectrometry			

