

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHAINCAL POWER ENGINEERING DEPARTMENT

Studying the Swirling Effect on the Thermal and Combustion Characteristics for the Gas Domestic Burner

A Thesis Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

By

Ahmed Adel El-Sayed Moustafa

Bachelor of Science in Mechanical Engineering (Mechanical Power Engineering) Faculty of Engineering, Ain Shams University, 2011

Supervised By

Prof. Mahmoud Mohammed Kamal Abd El Aziz

Dr. Hany El-Sayed Abdel Halim

Cairo -(2019)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHAINCAL POWER ENGINEERING DEPARTMENT

Studying the Swirling Effect on the Thermal and Combustion Characteristics for the Gas Domestic Burner

By

Ahmed Adel El-Sayed Moustafa

Bachelor of Science in Mechanical Engineering (Mechanical Power Engineering) Faculty of Engineering, Ain Shams University, 2011

Examiners' Committee

Name and Affiliation	Signature	
Prof. Mahmoud Abd El Fattah El Kady Mechanical Power, El Azhar University		
Prof. Mahmoud Abd El Rasheed Nosier Mechanical Power, Ain Shams University		
Prof. Mahmoud Mohammed Kamal Abd El Aziz Mechanical Power, Ain Shams University		

Date: 14 March 2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHAINCAL POWER ENGINEERING DEPARTMENT

Studying the Swirling Effect on the Thermal and Combustion Characteristics for the Gas Domestic Burner

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Power Engineering by

Ahmed Adel El-Sayed Moustafa

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)
Faculty of Engineering, Ain Shams University, 2011

Supervisors

Name and Affiliation	Signature	
Prof. Mahmoud Mohammed Kamal Abd El Aziz		
Mechanical Power, Ain Shams University		
Dr. Hany El-Sayed Abdel Halim		
Mechanical Power, Ain Shams University		

Date: 14 March 2019

Statement

This thesis is submitted as a partial fulfillment of Master of

Science in Mechanical Engineering, Faculty of Engineering, Ain

Shams University.

The author carried out the work included in this thesis, and no

part of it is been submitted for a degree or a qualification at any

other scientific entity.

Ahmed Adel El-Sayed Moustafa

Signature

Date: 14 March 2019

I

Researcher Data

Name : Ahmed Adel El-Sayed Moustafa

Date of birth : 18th November, 1989

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Power Engineering

University issued the degree : Ain Shams University

Date of issued degree : June, 2011

Current job : Senior Laboratory Engineer –

Electrolux Egypt

Thesis Summary

An experimental study carried out, to investigate the thermal efficiency and carbon monoxide emissions for different gas domestic burner designs, these designs included a number of approaches that were determined to influence of these aspects on the overall performance of the burner. In this research, two types of burner were examined a single ring burner and a double ring burner. Testing each burner on multiple pan support heights at different air to fuel ratios to see the tangible enhancement.

For the single ring burner three burners were tested a radial ordinary design, a swirl design and an impinging flames design. The highest efficiency was for the swirl single ring, and the achieved efficiency was 60.4% with a rise of 1.5% from the radial design at the lowest pan support height and highest Reynolds number.

The main reason behind this high efficiency is that the swirling flow allowed for a longer residence time between the flames and the heated load transferred more heat to the load while this measured the highest emissions out of all single ring burners.

The carbon monoxide emissions in the impinging flames burner were as low as 0.008%; this was due to the long flames propagating radially by impinging flames that resulted to a lower contact area between the flames and the heated load, adding on the impinging flames allowed more secondary air to surround the flames lengths.

For the double ring burner four burners were examined a radial design, swirl design, counter swirl design, and impinging flames design. The counter flow in the double ring burner showed the best thermal efficiency with a value of 57.4%, with a rise also of 1.5% the same as the single ring burner.

The double ring burner with impinging flames was the lowest emissions out of all designs with lowest emissions achieved 0.018 % of carbon monoxide emissions, but the best practical burner for the limits of international standards was the impinging flame burner.

To conclude the impinging flames and swirl flow when added to the gas domestic burners tend to improve the performance of the burners. More combinations need to be experimented to work more on enhancing the thermal efficiency and lowering the combustion emissions.

Key words:

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Prof. Mahmoud Mohammed Kamal Abd El Aziz and Dr. Hany El-Sayed Abdel Halim, for their continuous support, encouragement, and guidance during this research work.

I am deeply grateful to my parents and brothers for their encouragement and support; and I'm deeply in debt to my dear wife for her patience and support during day after day activities of this work and many weekends spent in the lab testing and preparing the thesis.

Finally, I would like to thank my friends and colleagues the supported me during this research. I would like also to thank my dear friend Ahmed Fahmy and Mohamed El demerdash and Marco Sapportti my managers for their support and full encouragement.

Table of Content

State	emen	tI
Rese	earch	er DataII
The	sis Su	ımmaryIII
Ack	nowl	edgementIV
Tabl	le of	ContentV
List	of Ta	ablesIX
List	of Fi	guresX
List	of Sy	ymbolsXIV
1.	Ch	apter 1: Introduction1
1.	1	Domestic Burners:
1.	2	Flame Type Definition
1.	3	Burner Classification
1.	4	Fluid Dynamics of Gas Burners
1.	5	Aerated Premixed Gas Burner5
1.	6	Domestic Burner Flame Configuration6
1.	7	Swirl Flow7
1.	8	Air to Fuel Ratio
1.	9	Flame Front Impinging
1.	10	Flame and Surface Impinging
1.	11	Thesis Outlines
2.	Ch	apter 2: Literature Survey
2.	1	Introduction
2.	2	Review of Previous Researches

	2.2.	1 Swirl impact on gas burners performance and emissions	10
	2.2.	2 Influence of swirl flow direction on domestic burner performance	13
	2.2.	3 Load height impact on the domestic burner performance	13
	2.2.	4 Intersecting flames behavior and performance effect	15
	2.3	Present Work Objective	16
3.	Cl	napter 3: Test Rig and Testing Methodology	18
	3.1	Introduction	18
	3.2	Test Rig	18
	3.3	New Designs Burners	19
	3.3.	1 Single ring new designed burners	19
	3.3.	2 Double ring new designed burners	20
	3.4	Measuring Devices and Testing Methodologies	22
	3.4.	1 Thermal efficiency	22
	3.4.	2 Carbon monoxide emissions	25
	3.4.	3 Measuring mixture flowrate in the venture tube	26
	3.4.	4 Dimensionless parameters referencing	31
4.	Cl	napter 4: Experimental Results and Analysis	34
	4.1	General	34
	4.2	Single Ring Burner Results	34
	4.2.	1 Radial flow burner	35
	4.2.	2 Swirl flow burner	38
	4.2.	3 Impinging flames burner	41
	4.2.	4 Thermal efficiency and carbon monoxide emission at constant δ	44
	4.2.	5 Thermal efficiency and carbon monoxide emission at constant Reyn	olds
	nıın	nher	47

4.3 Double Ring Burner Results	50
4.3.1 Radial flow burner	51
4.3.2 Swirl Burner	54
4.3.3 Counter swirl burner	57
4.3.4 Impinging flame burner	60
4.3.5 Thermal efficiency and carbon monoxide emission at constant	5 63
4.3.6 Thermal efficiency and carbon monoxide emission at constant number	•
4.4 Single and Double Ring Results Comparison	68
4.4.1 Comparison between radial single and radial double ring burne	r 68
4.4.2 Comparison between swirl single and swirl double ring burner.	71
4.4.3 Comparison between impinging flames single and impinging fl	
double ring burner	73
5. Chapter 5: Conclusions and Recommendations	75
5.1 Conclusions	75
5.2 Recommendations	77
References	78
Appendices	81
Appendix A	81
Single Ring Single Charts & Tables	81
Double Ring Single Charts & Tables	96
Appendix B	116
Fuel Properties	116
Appendix C	117
Appendix D	118

Pot Selection Table	118
Appendix E	119
Infrared gas analyzer	119
Appendix F	120
Pressure gauge	120
Appendix G	121
Temperature indicator	121
Appendix H	122
Anemometer calibration certificate	122
Appendix I	123
Wet flowmeter calibration certificate	123
Appendix J	124
Environmental Conditions calibration certificate	124
Appendix K	125
Gas Collecting Hood	125

List of Tables

Table 1. Reynolds numbers where testing will be performed at	32
Table 2 Values of δ for the single ring burners	33
Table 3. Values of δ for the double ring burners	33

List of Figures

Figure 1. Types of flames	2
Figure 2 Jet development shape regarding potential core and shear layer	4
Figure 3 Single ring burner with casted flame ports 1) Tap; 2) Injector; 3) Venture	•
tube; 4) Burner body; 5) Steel cap	5
Figure 4 Double ring with drilled flame ports 1) Tap; 2) Injector; 3) Venture tube	;
4) Burner body; 5) Steel cap	6
Figure 5. Impinging flames	8
Figure 6. Sketch of the Testing Rig	18
Figure 7. Sketch for the radial single ring burner	19
Figure 8. Sketch for the radial double ring burner	20
Figure 9. Image of test rig with acquisitioning devices for thermal efficiency	
evaluation	22
Figure 10. Image of test rig with acquisitioning devices for carbon monoxide	
emissions	25
Figure 11 Points for measurements across venture tube section	27
Figure 12 Illustration of the flow speed measuring points	27
Figure 13 Images of the actual placement of the anemometer in the cross section of	of
the venture tube	28
Figure 14 Air Adjustor adjusted on the first position	28
Figure 15 Mixture velocity distribution at 1st air adjustor position	28
Figure 16 Air adjustor adjusted at the 2nd position	29
Figure 17 Mixture velocity distribution at 2nd air adjustor position	30
Figure 18 Air Adjustor adjusted at the 3rd position	30
Figure 19 Mixture velocity distribution at 3rd air adjustor position	31
Figure 20 Image of radial flow burner	34
Figure 21. Image of swirl flow burner	34
Figure 22. Image of impinging flames burner	34
Figure 23. Thermal efficiencies for radial single ring burner at different δ	35
Figure 24. Carbon monoxide emissions radial single ring burner at different δ	36

Figure 25Thermal efficiency and carbon monoxide emissions for single ring radial
burner with EN 30-1 standard limits
Figure 26. Thermal efficiencies swirl single ring burner at different $\delta38$
Figure 27. Carbon monoxide emissions swirl single ring burner at different δ 39
Figure 28 Thermal efficiency and carbon monoxide emissions for single ring swirl
burner with EN 30 standard limits
Figure 29. Thermal efficiencies for impinging flame single ring burner at different $\boldsymbol{\delta}$
41
Figure 30. Carbon monoxide emissions for impinging flames single ring burner at
different δ
Figure 31 Thermal efficiency and carbon monoxide emissionsfor Single ring
impinging flame burner with EN 30 standard limits
Figure 32 Thermal efficiencies of three single ring burner types @ δ =0.22244
Figure 33. Carbon monoxide emissions of three single ring burner types @ δ =0.222
Figure 34. Thermal efficiencies of three single ring burner types @ δ =0.244 45
Figure 35. Carbon monoxide emissions of three single ring burner types @ δ =0.244
45
Figure 36. Thermal efficiencies of three single ring burner types @ δ =0.266 46
Figure 37. Carbon monoxide emissions of three single ring burner types @ δ =0.266
46
Figure 38. Thermal efficiencies of three single ring burner types @ Re=1580 47
Figure 39. Carbon monoxide emissions of three single ring burner types @
Re=1580
Figure 40. Chart for thermal efficiencies of three single ring burner types @
Re=1800
Figure 41. Chart for carbon monoxide emissions of three single ring burner types @
Re=180048
Figure 42. Thermal efficiencies of three single ring burner types @ Re=2030 49
Figure 43. Carbon monoxide emissions of three single ring burner types @
Pa-2030

Figure 44. Image of radial flame burner
Figure 45. Image of Swirl flame burner
Figure 46. Image of Counter swirl flame burner
Figure 47. Image of Impinging flame burner
Figure 48. Thermal efficiencies for radial flame double ring burner at different $\delta.51$
Figure 49. Carbon monoxide emissions for radial flame double ring burner at
different δ
Figure 50 Thermal efficiency and carbon monoxide emissions for double ring radial
burner with EN 30 standard limits
Figure 51.Thermal efficiencies for swirl flame double ring burner at different δ 54
Figure 52. Carbon monoxide emissions for swirl flame double ring burner at
different δ
Figure 53 Thermal efficiency and carbon monoxide emissions for double ring swirl
burner with EN 30 standard limits
Figure 54. Thermal efficiencies for counter swirl flame double ring burner at
different δ
Figure 55. Carbon monoxide emissions for counter swirl flame double ring burner
at different δ
Figure 56 Thermal efficiency and carbon monoxide emissions for double ring
counter swirl burner with EN 30 standard limits
Figure 57. Thermal efficiencies for Impinging flame double ring burner at different
δ
Figure 58. Carbon monoxide emissions for Impinging flame double ring burner at
different δ
Figure 59 Thermal efficiency and carbon monoxide emissions for double ring
impinging flame burner with EN 30 standard limits
Figure 60. Thermal efficiencies of four double ring burner types @ δ =0.166 63
Figure 61. Carbon monoxide emissions of four double ring burner types @ δ =0.166
Figure 62. Thermal efficiencies of four double ring burner types @ δ =0.183 64