SOME PHYSIOLOGICAL STUDIES ON DATE PALM MICROPROPAGATION USING DIRECT SOMATIC EMBRYOGENESIS

 $\mathbf{B}\mathbf{v}$

WALID BADAWY ABDELAAL ABDRABO

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2001 M.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Physiology)

Department of Agric. Botany Faculty of Agriculture Cairo University EGYPT

2019

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

SOME PHYSIOLOGICAL STUDIES ON DATE PALM MICROPROPAGATION USING DIRECT SOMATIC EMBRYOGENESIS

Ph. D. Thesis
In
Agric. Sci. (Plant Physiology)

By

WALID BADAWY ABDELAAL ABDRABO

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2001 M.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2011

APPROVAL COMMITTEE

Dr. IBRAHIM SEIF ELDIN IBRAHIM
Professor of Plant Physiology, Fac. Agric., Ain Shams University
Dr. MOHAMED KHALIL KHALIL
Professor of Plant Physiology, Fac. Agric., Cairo University
Dr. MOHAMED RAMADAN ABOULELLA
Professor of Plant Physiology, Fac. Agric., Cairo University

Date: 2/5/2019

SUPERVISION SHEET

SOME PHYSIOLOGICAL STUDIES ON DATE PALM MICROPROPAGATION USING DIRECT SOMATIC EMBRYOGENESIS

Ph. D. Thesis In Agric. Sci. (Plant Physiology)

By

WALID BADAWY ABDELAAL ABDRABO

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2001 M.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo, Al-Azhar Univ., 2011

SUPERVISION COMMITTEE

Dr. MOHAMED RAMADAN ABOUL ELLA NESIEM Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. ESSAM MOHAMED ABDEL MOATY DARWISH Associate Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. SHERIF FATHY ALI ELSHARABASY Head Researcher of Horticulture, Date Palm Lab., ARC, Giza

Name of Candidate: Walid Badawy Abdelaal Abdrabo Degree: Ph.D. Title of Thesis: Some Physiological Studies on Date Palm Micropropagation

Using Direct Somatic Embryogenesis

Supervisors: Dr. Mohamed Ramadan Aboul Ella Nesiem

Dr. Essam Mohamed Abdel Moaty Darwish

Dr. Sherif Fathy Ali Elsharabasy

Department: Agricultural Botany **Branch:** Plant Physiology

Approval: 2/5/2019

ABSTRACT

Date palm direct somatic embryos cultures were obtained from culturing the shoot tip explants isolated from off-shoots of semi dry cv. Siwy. Meanwhile, indirect somatic embryos and direct organogenesis were obtained from culturing the explants isolated from immature female inflorescence of date palm soft cv. Zaghloul. The aim of this investigation to study in two separated parts the influence of different physical and chemical factors, inducing combinations of auxins and cytokinins as well as other experiments conditions on the initiation, formation, and germination of direct somatic embryos induced from shoot tip explants of semi dry Siwy cultivar as well as from immature female inflorescence explants of soft Zaghloul cultivar date palm (Phoenix dactylifera L.). The obtained results in first part indicated that highest percentage of free contamination and survival explants were obtained with treatment C (70% ethanol, 1 min + 20% Clorox, 15 min + 0.1% HgCl₂, 20 min). In addition, S3 treatment containing 2, 4-D and NAA each at 0.25 mg/l as well as 2iP and BAP each at 2.5 mg/l gave the highest value of pro-embryonic mass. The direct somatic embryos formation was significantly increased in treatment F3 supplemented with NOA and NAA each at 0.25 mg/l as well as 2iP and BAP each at 2.5 mg/l. Moreover, repetitive embryos have significantly improved by using treatment T2 supplemented with 2, 4-D and NAA each at 0.125 mg/l as well as 2iP and BAP each at 0.05 mg/l. Improved maturation of normal embryos was significantly increased in M4 treatment supplemented with 0.4 mg/l ABA after 12 weeks of culture period. The root length recorded a significant increase with treatment R4 supplemented with NAA and IBA each at 0.5 mg/l and free of cytokinins. Meanwhile, treatment R8 supplied with NAA and IBA each at 1.0 mg/l as well as 2iP and BAP each at 0.05 mg/l significantly increased number of roots. In part 2, regeneration from immature female inflorescence explants of Zaghloul, the callus was significantly increased when 2, 4-D and NAA were each added at 0.25 mg/l, whereas 2iP and BAP were each added at 0.1 mg/l (treatment E1). Concerning embryo formation, a significant increase was recorded in treatment D3 supplemented with NOA and NAA each added at 0.25 mg/l whereas 2iP and BAP were each added at 2.5 mg/l. on the other hand,, the favorable effects on produced embryos were also supported by higher concentration of their total soluble proteins and higher activity of their POD enzyme. Finally, it could conclude that somatic embryogenesis produced directly or indirectly after exposure of responsive explants depending on the critical concentrations of exogenously supplied plant growth regulators during the initial culture phase. On the contrary, repetitive of the somatic embryos have been optimized on low level of hormone or free-hormone.

Key words: ABA, Auxins, Cytokinins, Date palm, Direct somatic embryos, Inflorescence, Micropropagation, *Phoenix dactylifera* L.

DEDICATION

This thesis would not have been possible without helping from **Allah**. I dedicate this work to my family for their help and encouragement. To my friends and all people in my life who support me.

ACKHNOWLEDGEMENT

Firstly may unlimited thanks to "Allah"

The author wishes express his deepest gratitude and appreciation to **Dr. Mohamed Ramadan Aboul ella Nesiem,** Professor of Plant Physiology, Fac. Agric., Cairo University, for giving me the honour of working under his supervision.

The author also wishes to express his appreciation To **Dr**. **Essam M. Abdel Moaty**, Associate Professor of Plant Physiology, Fac. Agric., Cairo University, for his supervision and available assistance during preparation of this thesis.

I am grateful to **Dr. Sherif F.El-Sharabasy**, Head Researcher of Horticulture, Date Palm Lab., ARC, Giza, for his encouragement and continuous help. For providing facilities needed to mark this work. All thanks to everyone who helped me in completing this study.

LIST OF ABBREVIATIONS AND INITIALS

2,4-D 2,4 dichlorophenoxy acetic acid

2iP N⁶-(2- Isopentenyl) adenine

ABA Abscisic acid

BA or BAP Benzyl adenin or Benzylaminopurine

Cv. Cultivar

DW Dry weight

FW Fresh weight

GA₃ Gibberellic acid

IAA Indole-3-acetic acid

IBA Indole-butyric acid

IEDC Induced embryogenically determined cells

MS Murashige and Skoog basal medium

NAA Naphthalene acetic acid

NOA Naphthoxy acetic acid

PEDC Pre-embryogenic determined cells

PEMs Pre-embryonic mass of cells

PGRs Plant growth regulators

POD Peroxidase

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
Part 1: plant regeneration from shoot tip explants somatic embryogenesis.	
Part 2: An in vitro regeneration from inflorescen-	ce explants
MATERIALS AND METHODS	
Frist part	
Experiment (1): Shoot tip and leaf primordia steri	lization
Experiment (2): Establishment stage for direct em Experiment (3): Somatic embryo formation	•
Experiment (4): Repetitive embryogenesis (secon	ndary embryos)
Experiment (5): Maturation of somatic embryos.	
Experiment (6): Root elongation on developed sh	nootlets
Second part	
Experiment (1): Establishment stage for embryog	enic callus
Experiment (2): Somatic embryogenesis formatio	n
Experiment (3): Embryo development	
Chemical analysis	
RESULTS AND DISCUSSION	
First part: Plant regeneration from shoot tip e	xplants.
1- Selection of sterilization procedure	
2- Induction of pro-embryogenic mass	
3- Direct somatic embryos formation	
4- Repetitive embryogenesis (secondary embryo	os)
5- Maturation of somatic embryos	
6- Shootlets elongation	
7- Root elongation	