

Remediation of Radioactively Contaminated Soil Produced in Petroleum Extraction Sites

A thesis Submitted

 $\mathcal{B}y$

Yasser Ahmed Ali Ahmed Nasef

M.Sc. in Chemistry (2008)

Assistant Lecturer

Radiation Protection Department

Nuclear and Radiological Regulatory Authority (ENRRA)

 \mathcal{T}_0

Chemistry Department, Faculty of Science,

Ain Shams University

For

Fulfillment of the Ph.D. Degree of Science
In Chemistry

2019

Remediation of Radioactively Contaminated Soil Produced in Petroleum Extraction Sites

Submitted By

Yasser Ahmed Ali Ahmed Nasef

M.Sc. in Chemistry (2008)

Assistant Lecturer

Radiation Protection Department

Nuclear and Radiological Regulatory Authority (ENRRA)

Board of Scientific Supervision

Prof. Dr.
Mostafa Mohamed H. Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University Prof. Dr. Mohamed Reda M. Ezz El-Din

Prof. of Radiation Chemistry Nuclear and Radiological Regulatory Authority

Dr. Randa Mahmoud Mohamed

Lecturer of Radiation Physics Nuclear and Radiological Regulatory Authority

Faculty of Science Chemistry Department

Remediation of Radioactively Contaminated Soil Produced in Petroleum Extraction Sites

Submitted By

Yasser Ahmed Ali Ahmed Nasef

Thesis Supervisors	Approval
Prof. Dr. Mostafa Mohamed H. Khalil Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University	
Prof. Dr. Mohamed Reda M. Ezz El-Din Prof. of Radiation Chemistry Nuclear and Radiological Regulatory Authority	
Dr. Randa Mahmoud Mohamed Lecturer of Radiation Physics Nuclear and Radiological Regulatory Authority	

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry Department Faculty of Science Ain Shams University

ACKNOWLEDGMENT

First, I thank "GOD", the Beneficent, the Merciful, for my success in the completion of this work.

My sincere gratitude is due to **Prof. Dr. Mostafa Mohamed H. Khalil**, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, for his valuable support and encouragement.

I wish to express my sincere thanks and gratitude to **Prof. Dr. Mohamed Reda Ezz El-Din**, Professor of Radiation Chemistry,
Nuclear and Radiological Regulatory Authority, for his close
supervision, scientific discussion of the obtained data and for his help
in the final presentation of the thesis. He has guided me into this field
and continuously helped and encouraged during the whole work.

I am deeply grateful also to **Dr. Randa Mahmoud Mohamed**, Lecturer of Radiation Physics, Nuclear and Radiological Regulatory Authority, for her effective supervision, fruitful discussion and valuable advice.

Sincere thanks to **Prof. Dr. Hanan Mohamed Diab and my colleagues** in the Radiation Protection Department and Central Laboratory, Nuclear and Radiological Regulatory Authority, for their assistance in the accomplishment of this work and friendly atmosphere.

Sincere thanks to all the **members** of Chemistry Department, Faculty of Science, Ain Shams University.

Finally, I wish to thank my **father, mother, Wife and brothers,** for their encouragement, and support, especially my father, mother and my fiancée who did a lot for me to support, encourage and push me forward.

YASSER AHMED ALI AHMED NASEF

Table of Contents

CHAPTER 1	1
INTRODUCTION	1
1. Introduction	1
1.1 The Phenomenon of Radioactivity	2
1.2 Sources of Radioactivity in Environment	5
1.3 Natural Radiation Sources	6
1.4 NORM definition:	8
1.5 Origin of TENORM	11
1.6 TENORM Hazards	14
1.7 Industries with TENORM Radiation:	16
1.8 Origin of TENORM in oil and gas fields:	19
1.9 Accumulation of TENORM in oil and gas wastes:	32
1.10 TENORM radioactivity levels in oil and gas wastes:	34
1.11 Standards and Regulations of TENORM:	36
1.11.1 International standards	
1.11.2 Standards and regulation within EU member states:	39
1.11.3 Standards and regulation of TENORM in Egypt:	
1.12 TENORM Measurements:	45
1.13 TENORM monitoring	47
1.14 Potential effects of TENORM on the receive	
environment	. 50
1.15 Personal exposures due to TENORM radiation in oil and	gas
fields:	51
1.16 Management of routine operation exposures:	55
1.17 Assessment of radiological doses for workers	56
1.18 TENORM waste disposal	57
1.19 Nuclear, chemical and environmental characteristics of	the
investigated radionuclides	. 63
1.19.1 Radium:	63

1.19.2 Uranium:
1.19.3 Thorium:
CHAPTER 2
Literature Review
CHAPTER 3
MATERIAL AND METHODS78
Part I
3.I. Decontamination of the radioactive contaminated soil 78
3.I.1. Soil Samples and preparation:
3.I.2. Instrumentation
3.I.3. Physical characterization of the investigated soil samples 81
3.I.4. Radioactivity measurements
3.I.4.1 Gamma ray spectrometric analysis
3.I.4.2 Set up of the used gamma ray spectrometer 85
3.I.4.3 Background reduction of the gamma spectrometer 86
3.I.4.4 Energy and efficiency calibration of gamma
spectrometers
3.I.4.4.1 Energy Calibration and Peak Identification
3.I.4.4.2 Energy resolution
3.I.4.4.3 Efficiency Calibration of the HPGe Detector: 89
3.I.5 Leaching Solution preparation and characterization: 96
3.I.6 Leaching Process: 97
3.I.7 Factors affecting Leaching process
3.I.7.1 Effect of leaching time:
3.I.7.2 Effect of Acid Concentration:
3.I.7.3 Effect of leaching temperature:
3.I.7.4 Effect of solid liquid ratio
3.I.8 Removal of Radium from all the investigated soil samples99
3.I.9 Treatment of the resulting waste solutions:
Part II
3.II Dose assessments for workers

3.II.1 Direct external doses measurements Using TLD:	100
3.II.2 External doses Calculations:	101
3.II.2.1 Absorbed dose rate	101
3.II.2.2 Annual effective dose equivalent (AEDE):	102
3.II.2.3 Radiation hazarded indices	103
3.II.2.3.a Radium equivalent radioactivity (Raeq):	103
3.II.2.3.b Gamma radiation level index (Iγ):	103
3.II.2.3.c The external and internal hazard index (Hex, Hin)	103
Chapter 4	105
Results and discussions	105
Part I	105
4.I Decontamination of the TENORM contaminated soils:	105
4.I.1 Contaminated soil samples collection	and
characterization	106
4.I.1.1 Physical characterization of the collected soil samples	s106
4.I.1.1 Radiometric characterization of the collected	soil
samples	109
4.I.2 Leaching solutions preparation and characterization:	119
4.I.3 Leaching process	122
4.I.3.1 Effect of Leaching time	122
4.I.3.2 Effect of acid concentration	123
4.I.3.3 Effect of leaching temperature	125
4.I.3.4 Effect of solid-Liquid Ratio	128
4.I.4 Removal of radioisotopes from all the investigated	soil
samples	130
Part II	134
4.II Dose assessment for the workers related with the oil and	l gas
production fields	134
4.II.1 External dose determination	134
4.II.1.1 Direct annual external dose measurements U	sing
TLD	134

4.II.1.2 External doses Calculations:	144
4.II.1.2.1 Absorbed dose rate	144
4.II.1.2.2 Annual effective dose equivalent (AEDE):	150
4.II.2 Radiation Hazarded Indices	154
4.II.2.1 Radium equivalent radioactivity (Raeq):	154
4.II.2.2 Gamma radiation level index (Iγ):	161
4.II.2.3 The external and internal hazard index (Hex, Hin):	162
References	165
Summary and Conclusion	.185

Aim of the work

The aim of the present work is to studying the feasibility of using soil washing technique (a physical-chemical separation process) for removing radium-226 from the TENORM contaminated soils samples collected from different petroleum sites in Egypt. The physical separation/ activity distribution of the investigated soil particle sizes followed by soil chemical treatment has been also carried out. Treatment of the resulting contaminated solution with different methods in order to:

- 1) Minimize risks to oil companies' workers in accordance with acceptable levels recommended by the relevant regulatory bodies.
- 2) Reduce the volume of waste generated in order to facilitate the permanently disposal.
- 3) Estimate the radiation doses for workers of oil production companies because of exposure to these pollutants.
- 4) Propose some regulatory requirements necessary for treatment or disposal of such contaminants.

The other aim of the present work is devoted to assess the radiological hazards for the workers at oil and gas production fields by estimating radium equivalent activity (Ra_{eq}), absorbed dose rate (D), annual effective dose rate (AEDE), external hazard (H_{ex}), internal hazard (H_{in}) and Gamma radiation representative level Index ($I\gamma$).

The main objectives of this study were:

- 1. Collecting samples of radioactively contaminated soil from some sites of oil companies.
- 2. A physical separation of the contaminated soil particles depending on the particle size.
- 3. Treatment of contaminated soil;
- 4. Treatment of the solutions resulting from the process of remediation of contaminated soil.
- 5. Studying the factors affecting the treatment process.
- 6. Elaboration of the obtained data with the possible predictions of the treatment of waste solutions.
- 7. Radiological dose assessment due to remediation of radioactively contaminated soils.
 - a) Calculation of the occupational exposure by different exposure pathways. (internal and external).
 - b) Calculation of the radiological hazards indices.
 - c) Compare the estimated dose with international guides in order to recommending the suitable cleanup level.

Arab Journal of Nuclear Sciences and Applications

ISSN 1110-0451

Web site: ajnsa.journals.ekb.eg

(ESNSA)

Radiological Hazards of TENORM Contaminated Soil at Oil and Gas Fields

YA.A. Ahmed⁽¹⁾, R.M.M. Mahmoud⁽¹⁾, M.R. Ezz El-Din⁽¹⁾ and Mostafa M. H. Khalil⁽²⁾

¹Nuclear and Radiological Regulatory Authority, Cairo, Egypt

Received 17th Sept. 2018 Accepted 17th Oct. 2018 The presence of large quantities of TENORM contaminated soil produced during the extraction and processing of crude oil at oil extraction sites exceeds the radiological reference levels assigned by the international organizations [1] TENORM may cause the exposure of workers at these sites to unusual radiation hazards. This is of a great importance for assessing the dose to the workers at these sites, which plays a vital rule in exploring the radiation health risks due to radiation exposure. This study aims to assess the TENORM activity concentration of the contaminated soil in some oil and gas production fields in Egypt. The assessment of the radiological hazards for the workers by estimating the annual doses and the radiation hazard indices were also studied. The obtained data show that the activity concentration of 238 U, 232 Th and 40 K ranged from 166 to 42567 Bq/Kg, 88 to 8358 Bq/Kg and 52.22 to 440 Bq/Kg respectively. The calculated absorbed dose rate ranged from 132.39 - 24732.67 nGy/h, and the calculated Annual Effective Dose Equivalent ranged from 0.16 - 30.33 mSv/y (depending on the activity concentration of NORM contamination). The radiation hazard indices were calculated and found to be much higher than the international values. From the obtained results, it has been concluded that the remediation/decontamination of the contaminated soils in the production sites that have activity concentration higher than 400 Bq/Kg is highly recommended. In addition, Egyptian regulations should be coherent to force companies to decontaminate NORM contamination to reduce as much as possible the radiation worker exposure.

Keywords: NORM activity concentration, Dose assessment, Radiation hazardous indices

Introduction

In recent decades, the development of new technologies in oil production fields has resulted in the generation of by-products and waste called technologically enhanced naturally occurring radioactive materials (TENORM) produced from several industries such as uranium mining, coal ash, phosphate ore processing, metal mining and petroleum and processing. industry Therefore, human technical activity can increase radiation exposure, not only to the person directly involved in these activities, but also to the local or even whole population and environment. The majority of radionuclides in TENORM are U, Th and their respective decay progenies. Usually, radium (226Ra) and radon (222Rn) are used to characterize the redistribution of TENORM that results from human activities [3-4]. In oil and gas production, the arising TENORM may be solid waste (scale and/or sludge) or produced waters [5]. The activity concentrations of ²²⁶Ra in TENORM can be much higher than the exemption levels established by IAEA [6]. The recommended exemption level for uranium series is ²³⁸U= 1 Bq/g and ²²⁶Ra= 10 Bq/g, while for thorium decay a chain is ²³²Th= 1 Bq/g, ²²⁸Ra = 10 Bq/g and ²²⁴Ra = 10 Bq/g [5]. The initial evaluations of occupational radiation exposure in the oil and gas industries were reported a few decades ago [7].

The presence of radium-226 at high concentrations in radioactive wastes that resulted from oil and gas

Corresponding author: yassernasef@yahoo.com DOI: 10.21608/ajnsa.2019.5150.11192019.

© Scientific Information, Documentation and Publishing Office (SIDPO)-EAEA

²Faculty of Science - Ain Shams University, Cairo, Egypt