BIOTECHNOLOGICAL STUDIES ON TOMATOES IMPROVEMENT FOR SALT STRESS TOLERANCE THROUGH TISSUE CULTURE AND GAMMA RADIATION TECHNIQUES

By

OSAMA ABD EL- HAMEED HELMY

B.Sc., Agric. Sc. (Biotechnology), Al-Azhar University, 2010

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics

Faculty of Agriculture

Ain Shams University

Approval Sheet

BIOTECHNOLOGICAL STUDIES ON TOMATOES IMPROVEMENT FOR SALT STRESS TOLERANCE THROUGH TISSUE CULTURE AND GAMMA RADIATION TECHNIQUES

By

OSAMA ABD EL- HAMEED HELMY

B. Sc., Agric. Sc. (Biotechnology), Al-Azhar University, 2010

This thesis for M.Sc. degree has been approved by:

Dr. Magdy A.A. AL-Kordy Researcher Prof. Emeritus of Plant Genetic and Cytolgy, National Research Center Dr. Nermin M.Abd El-Gawad Prof. of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Ahmed Fahmy Hussien Abo-Doma Prof. of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Eman Mahmoud Fahmy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 2 / 5 / 2019

BIOTECHNOLOGICAL STUDIES ON TOMATOES IMPROVEMENT FOR SALT STRESS TOLERANCE THROUGH TISSUE CULTURE AND GAMMA RADIATION TECHNIQUES

By

OSAMA ABD EL- HAMEED HELMY

B.Sc., Agric. Sc. (Biotechnology), Al-Azhar University, 2010

Under the supervision of:

Dr. Eman Mahmoud Fahmy

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ahmed Fahmy Hussien Abo-Doma

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Ayman Abd El-Megeed EL-Fiki

Prof of Biotechnology, National Center for Radiation Research and Technology. Atomic Energy Authority.

ABSTRACT

Osama Abd-El hameed Helmy: Biotechnological Studies on Tomatoes Improvement for Salt Stress Tolerance through Tissue Culture and Gamma Radiation Techniques. Unpublished Master Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2019.

Tomato (Lycopersicon esculentum Mill) are considered major and important globally vegetable crops in Egypt in particular. Tissue culture techniques have facilitated the use of mutation methods in crop improvement. The mutation induction in vegetative crops through tissue culture and y-irradiation may be the optimal method to improve this crop. Tomato explants Idkawy (Egyptian cultivar) was cultured in vitro on MS medium supplemented with 0.2 mg/l BAP. The resulted plantlet was treated with different gamma radiation doses (50, 100, 150, 200 and 250 Gy). The growth rate, survival and mean of shoot length decreased with increased gamma radiation doses. The survival percentages of irradiated plantlets ranged from 78.75% with 50 Gy and 18.75% with 250 Gy. Whereas, the shoot length decreased by a rate of 2.71 cm for the dose 50 Gy and 1.2 cm for dose 250 Gy. Plantlets were grown at different salinity concentrations of 50, 100, 150 and 200 mM NaCl. Salinity impacts on plant survivals decreased with increased NaCl concentration until it reached 5% at a concentration of 200 mM. Likewise, mean shoot length was affected negatively with salt concentrations where they decrease with increase of NaCl. Salt-tolerant (50 and 100 mM NaCl) plants were obtained from irradiated plants at dose 100 Gy. The mean of shoot length also had a negative effect, as it decreased as the combined effect increased. Ten SCoT primers applied with irradiated, salinity and the combined effect between gamma radiation and salinity to determine the banding patterns and moleculer markers. Total genomic DNA from four irradiated tomato leaves with different gamma radiation doses 50, 100, 150 and 200 Gy were used as templates for SCoT – PCR analysis. Ten SCoT primers amplified a total 114 amplicons with a range of 4 to 18

bands per primer. The polymorphism varied from 20 % to 90 % with an average polymorphism of 66.3%. These 10 markers were present as a total. Total genomic DNA from tomato grew on different NaCl concentration 50, 100, 150 and 200 mM NaCl was used as templates for SCoT- PCR analysis. A total of 120 amplicons bands were detected using the ten SCoT primers, of which 75 were polymorphic. The polymorphism varied from 10 % to 92.8%. This means that 21 markers were present as a total. Total genomic DNA from irradiated tomato with doses 100, 150 and 200 Gy and grew on 50 and 100 mM NaCl was used as templates for SCoT- PCR analysis. A total of 115 amplified bands were detected using the ten SCoT primers, of which 33 were polymorphic. The polymorphism varied from 0 % to 53.8 %. Five SCoT markers for salt tolerance were present.

Keywords: Tomato (*Lycopersicon esculentum* Mill), Tissue culture, Gamma irradiation, salinity, SCoT markers, DNA polymorphism.

ACKNOWLEDGEMENTS

First of all I am grateful to **Allah** the bestowed upon us a lot of blessing which we cannot enumerate and thank enough and I am grateful to Allah the most merciful for me with health, power and write my dissertation.

This thesis would not have been possible without the assistance of many people who gave me their support in different ways.

I would like to express my deep thanks to **Prof. Dr. Eman M. Fahmy**, Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University, for her kind support and guidance supervision, all the time, her efforts will always be remembered.

I wish to extend my deep appreciation to **Prof. Dr. Ahmed Fahmy Hussein Abo Doma**, Professor. of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for his direct supervision and guidance.

I would like to convey my heartfelt gratitude and sincere appreciation to **Prof. Dr. Ayman Abd El-Megeed El-Fiki**, Professor of Biotechnology, Dept. of Natural Products, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for his supervision, valuable assistance and his encouragement during this study.

My sincere thanks to every one helped me and supplied me with the facilities during this work, especially **Dr. Gamal Mohamed El-Metabteb** and **Dr. Mohamed Adly Mohamed** in the Natural Product Research Department, National Center for Radiation Research and Technology (NCRRT).

I am deeply indebted to my family to support and their continuous encouragement and praying for me throughout my life.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	XIII
1. INTRODUCTION	1
2. REVIEW OF LITERATURES	4
2.1. Tomato plant	4
2.2. Tomato tissue culture	5
2.3. The effect of gamma irradiation on tomato plants	11
2.4. Effect of salinity on tomato plants	14
2.5. Acclimatization	17
2.6. Molecular genetic studies	19
2.6.1. Start codon targeted (SCoT- marker)	19
3. MATERIALS AND METHODS	22
3.1. Plant materials	22
3.2. Methods	22
3.2.1. In vitro experiment	22
3.2.2. Gamma irradiation treatments	23
3.2.3. Salinity treatments	24
3.2.4. The combined effect between gamma radiation doses and	24
salinity	
3.2.5. Acclimatization	24
3.2.6. SCoT- markers	24
3.2.6.1. DNA Extraction	24
3.2.6.2. SCoT markers PCR technique	25
3.2.6.3. Gel preparation	26
3.2.6.4. Data analysis	26
3.2.6.5. Statistical analysis	27
4. RESULTS AND DISCUSSION	28
4.1. In vitro tomato plantlets Propagation	28

	Page
4.2. Effect of gamma radiation on tomato plantlets survival	29
4.3. Effect of salinity on tomato in vitro	31
4.4. The combined effect of gamma radiation and salt stress on	33
survival tomato plantlets	
4.5. Acclimatization	35
4.6. Molecular markers	37
4.6.1. The polymorphism of irradiated tomato using SCoT- PCR	37
technique	
4.6.2. SCoT- markers and salinity	55
4.6.3. Polymorphism of SCoT- markers and the combined effect	75
of gamma rays and salinity	
5. SUMMARY	95
6. REFERENCES	98
ARABIC SUMMARY	

LIST OF TABLES

Гable No.		Pages
(1)	Different concentrations of NAA, IAA BAP, KIN	
	and IBA growth regulators which used in six MS	
	media with Idkawy tomato cultivar for in vitro	
	experiment.	23
(2)	Primer names, nucleotide sequences and GC% of the	
	ten used SCoT primers.	26
(3)	The effect of the four growth regulators on the growth	
	rates of tomato plants in MS media.	28
(4)	The effect of gamma irradiation doses on growing	
	plantlets from 80 buds, percentage of bud survival and	
	mean of shoot length of tomato plantlets.	30
(5)	The effect of salt concentrations on number of	
	growing plantlets from 80 buds bud survival	
	percentage and mean of shoot length in tomato	
	plantlets.	32
(6)	The effect of combined treatments on percentage of bud	
	survival and mean of shoot length of tomato plantlets.	34
(7)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-1 primer under	
	different gamma irradiation treatments and the control.	38
(8)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-2 primer	
	under different gamma irradiation treatments and the	
	control.	40
(9)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-3 primer	
	under different gamma irradiation treatments and the	
	control.	41
(10)	Presence (1) and absence (0) of different bands	

Table No.		Pages
	appeared in tomato plantlets with SCoT-4 primer	
	under different gamma irradiation treatments and the	
	control.	43
(11)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-5 primer	
	under different gamma irradiation treatments and the	
	control.	44
(12)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-12 primer	
	under different gamma irradiation treatments and the	
	control.	46
(13)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-13 primer	
	under different gamma irradiation treatments and the	
	control.	48
(14)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-16 primer	
	under different gamma irradiation treatments and the	
	control.	49
(15)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-20 primer	
	under different gamma irradiation treatments and the	
	control.	50
(16)	Presence (1) and absence (0) of different bands	
	appeared in tomato plantlets with SCoT-33 primer	
	under different gamma irradiation treatments and the	
	control.	52
(17)	Total number of generated bands, polymorphic,	
	monomorphic bands, positive and negative markers	
	for irradiated tomato plantlets.	54
(18)	Presence (1) and absence (0) of different bands in	

Table No.		Pages
	tomato plantlets with SCoT-1 primer under the	
	control and different salt stress levels.	55
(19)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT 2 primer under the	
	control and different salt stress levels.	57
(20)	Presence (1) and absence (0) of different bands in	
	tomato plantlet with SCoT-3 primer under the	
	control and different salt stress levels.	59
(21)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-4 primer under the	
	control and different salt stress levels.	60
(22)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-5 primer under the	
	control and different salt stress levels.	63
(23)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-12 primer under the	
	control and different salt stress levels.	65
(24)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-13 primer under the	
	control and different salt stress levels.	67
(25)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-16 primer under the	
(2.5)	control and different salt stress levels.	69
(26)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-20 primer under the	70
(27)	control and different salt stress levels.	70
(27)	Presence (1) and absence (0) of different bands in	
	tomato plantlets with SCoT-33 primer under the	70
(20)	control and different salt stress levels.	72
(28)	Total number of bands, polymorphic, monomorphic	
	bands, positive and negative markers for each primer	

Table No.		Pages
	for tomato Idkawy cultivar grew under control and	
	different NaCl concentrations.	74
(29)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-1 primer.	75
(30)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-2 primer.	77
(31)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-3 primer.	79
(32)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-4 primer.	81
(33)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-5 primer.	82
(34)	Banding pattern profiles of control and different	
	treatment combinations in tomato plantlets using	
	SCoT-12 primer.	84
(35)	Banding pattern profiles of control and different	
	treatment combinations in Tomato plantlets using	
	SCoT-13 primer.	86
(36)	Banding pattern profiles of control and different	
	treatment combinations in Tomato plant using	o -
(2-)	SCoT-16 primer.	87
(37)	Banding pattern profiles of control and different	
	treatment combinations in Tomato plantlets using	
(20)	SCoT-20 primer.	89
(38)	Banding pattern profiles of control and different	
	treatment combinations in Tomato plantlets using	

Table No.		Pages
	SCoT-33 primer.	91
(39)	Total number of bands, polymorphic, monomorphic	
	bands and positive and negative marker for each	
	primer for irradiated tomato Idkawy cultivar grew	
	under salt stress.	93

LIST OF FIGURES

Fig. No.		Pages
(1)	Effect of gamma irradiation on the survival of tomato	
	plantlets.	30
(2)	Effect of different salinity concentrations on survival	
	tomato plantlets.	32
(3)	(A), (B) and (C) Effect of combined Treatment	
	between gamma radiation doses and Salt	
	concentrations on tomato plantlets survival.	35
(4)	Acclimatization of Tomato micropropagated plantlets	
	under greenhouse condition.	37
(5)	Banding patterns of SCoT1 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy.	39
(6)	Banding patterns of SCoT2 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy.	40
(7)	Banding patterns of SCoT3 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy,4=150Gy and	
	5=200Gy	42
(8)	Banding patterns of SCoT4 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy,4=150Gy and	
	5=200Gy	43
(9)	Banding patterns of SCoT5 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy	45

Fig. No.		Pages
(10)	Banding patterns of SCoT12 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy,4=150Gy and	
	5=200Gy	47
(11)	Banding patterns of SCoT13 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy	48
(12)	Banding patterns of SCoT16 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy	49
(13)	Banding patterns of SCoT20 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy.	51
(14)	Banding patterns of SCoT33 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50Gy, 3=100Gy, 4=150Gy and	
	5=200Gy	53
(15)	Banding patterns of SCoT1 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50mM, 3=100mM, 4=150mM and	
	5=200mM	56
(16)	Banding patterns of SCoT2 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50mM, 3=100mM, 4=150mM and	
	5=200mM	58
(17)	Banding patterns of SCoT3 primer with Tomato	
	plantlets under the five treatments; M=marker	
	1=control, 2=50mM, 3=100mM, 4=150mM and	60