

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

STRENGTHENING OF REINFORCED LIGTH WEIGHT CONCRETE BEAMS USING CARBON AND GLASS FIBERS

A Thesis
Submitted in partial fulfillment for the requirements of the Degree of

Master of Science

In
Civil Engineering (Structures)

BY MOSTAFA NASSER SAYED IBRAHIM

B.Sc. Building & construction Engineering 2012 October 6 University

Supervised by

PROF. AMR HUSSEN ZAHER

Professor of Concrete Structures, Structural Engineering Department, Faculty of Engineering Ain Shams University

DR. WAEL MOHAMED MONTASER

Building & construction Department Faculty of Engineering October 6 University

> Faculty of Engineering Ain Shams University Cairo 2019

Statement

This thesis is submitted to Faculty of Engineering, Ain Shams University, Cairo - Egypt,

for the degree of Master of Science in Structural Engineering.

The work included in this thesis was carried out by the author in the Department of

Structural Engineering, Ain Shams University, from October 2015 to September 2018.

No part of this thesis has been submitted for a degree or qualification at any other

University or Institute.

Date:

/ / 2019

Name: Mostafa Nasser Sayed Ibrahim

Signature:

i

INFORMATION ABOUT THE RESEARCHER

Name: Mostafa Nasser Sayed Ibrahim

Date of Birth: September, 12th, 1989

Place of Birth: Cairo, Egypt

Last Academic Degree: 2012, B.Sc. in Building and Construction, Faculty of Engineering of

October 6 University

Present Job: Teaching assistant in Building and Construction Department, Faculty of Engineering,

October 6 University

Signature:

ACKNOWLEDGMENTS

Above all, I would thank **GOD** for all the blessing that He has given me, including the opportunity to finish this study. I would also like to thank Him for the all special people that surround me.

The author wishes to record his special appreciation and gratitude to his advisor, **Prof. Dr. Amr Hussein Zaher and Dr.Wael Montaser** for their valuable guidance, helpful suggestion and continuous support during the research program.

The research was supported by the Housing and Building Research Center (HBRC), Dokki, Giza, Egypt. This support is gratefully acknowledged. I would like to thank those who helped and improved the means of casting and testing the samples. I am also grateful to those unmentioned others for contributing in countless ways to my writing and being interested in my research. To all of those contributors, I am most grateful.

The support provided by Sika Company, Egypt is also gratefully acknowledged for providing the CFRP, GFRP, super plasticizer and silica fume materials used in the test program.

I would like to dedicate this work to my Father, Mother, Brothers, Sisters, my wife, and very special thanks for my lovely daughters (Tota and Zena) for their continuous encouragement support and fruitful care.

Finally, I would like to thank my relatives, my friends, and my colleagues for their continuous encouragement and support.

Mostafa Nasser Sayed Ibrahim

TABLE OF CONTENTS

ACKNOWLEGMENT
TABLE OF CONTENTES
LIST OF SYMBOLS
LIST OF FUIGERS
LIST OF TABLES
ABSTRACT
CHAPTER (1): INTROUDUCTION
1.1 GENERAL
1.2 OBJECTIVES
1.3 SCOPE
1.4THESIS CONTENT
CHAPTER (2): LITERATURE REVIEW
2.1 INTRODUCTION
2.2 ADVANCED COMPOSITE MATERIALS
2.3 FIBER REINFORCED POLYMER (FRP)
2.3.1FRP Products
2.3.2 Application of FRP
2.3.2.1 Rehabilitation and Retrofitting Applications
2.3.2.2 Applications Subjected to Aggressive Environments
2.3.2.3 Applications in Construction
2.3.3 Constituent material
2.3.3.1 Fiber Properties
2.3.3.1.1Glass Fibers
2.3.3.1.2 Carbon Fibers
2.3.3.1.3 Aramid Fibers
2.3.3.2 Resin
2.3.3.2.1 Polyester Resins
2.3.3.2.2 Epoxy Resins
2.3.3.3 Interphase
2.3.3.4 Fillers
2.3.3.5 Additives
2.4 MATERIALS USED IN PRODUCING LIGHT WEIGHT CONCRETE

	2.4.1 Aggregates
	2.4.1.1 Coarse Aggregate
	2.4.1.2 Fine Aggregate
	2.4.2 Cement
	2.4.3Fly Ash
	2.4.4 Slag
	2.4.5 Silica Fume
	2.4.6 Chemical Admixtures
	2.5 USE OF FRP FOR INCREASING FLEXURAL STRENGTH
	2.6 USE OF FRP FOR INCREASING SHEAR STRENGTH
	2.7 USE OF FRP FOR INCREASING SHEAR AND FLEXURE STRENGTH
Cŀ	HAPTER (3): EXPERIMENTAL PROGRAM
	3.1 GENERAL
	3.2 BEAMS GEOMETRY
	3.3 EXPERIMENTAL PROGRAM SPECIMENS
	3.4 FABRICATION OF BEAMS
	3.5 BEAMS STRENGTHENING
	3.6 MATERIAL PROPERTIES
	3.6.1 Concrete
	3.6.2 Reinforcement
	3.6.3 GFRP, CFRP Sheets and Epoxy Paste and Resin
	3.7 TEST SET UP
	3.8 INSTRUMENTATION
Cŀ	HAPTER (4): EXPERIMENTAL RESULTS
	4.1 GENERAL
	4.2 EXPERIMENTAL RESULTS
	4.2.1 Modes of Failure
	4.2.1.1 Modes of Failure for Control Beams
	4.2.1.2 Modes of Failure for Group No (1)
	4.2.1.3 Modes of Failure for Group No (2)
	4.2.1.4 Modes of Failure for Group No (3)
	4.2.1.5 Modes of Failure for Group No (4)
	4.2.2 Cracking Behavior

4.2.2.1 Cracking Behavior of Control Beams	53
4.2.2.2 Cracking Behavior of Group No (1)	53
4.2.2.3 Cracking Behavior of Group No (2)	54
4.2.2.4 Cracking Behavior of Group No (3)	54
4.2.2.5 Cracking Behavior of Group No (4)	55
4.2.3 Deflection	68
4.2.4 Crack Width	75
4.2.5 Steel Strain	82
4.2.5.1 Main Steel Strain	82
4.2.5.2 Stirrup Steel Strain	89
4.3 Summary of Results	96
CHAPTER (5): ANALYTICAL STUDY	99
5.1 GENERAL	99
5.2 ANALYTICAL STUDY FOR SHEAR STRENGTHENED SPECIMEN	99
5.2.1 Egyptian Code of Practice (ECP 208-2005)	99
5.2.2 American Concrete Institute (ACI 440.2R-08)	101
5.2.3 Externally Bonded FRP Reinforcement for RC Structures (FIB-TG 9)	102
5.2.4 Comparison Between Experimental Results And Codes Results	104
5.3 ANALYTICAL STUDY FOR FLEXURAL SPECIMENS	106
5.3.1 Egyptian Code of Practice (ECP 208-2005)	106
5.3.2 American Concrete Institute (ACI 440.2R-08)	108
5.3.3 Externally Bonded FRP Reinforcement for RC structures (FIB-TG 9.3)	110
5.3.4 Comparison Between Experimental Results and Codes Results	112
CHAPTER (6): SUMMARY AND CONCLUSIONS	114
6.1 SUMMARY	114
6.2 CONCLUSIONS	114
5.3 FUTURE RESEARCH WORK	115
DEEEDENCES	116

LIST OF SYMBOLS

 A_f , A_{fv} = Area of FRP external reinforcement.

A_s= Total area of longitudinal steel reinforcement

 b_f = The width of FRP

 b_w = Width of concrete section

CE=Environmental reduction factor

d, d_{fv} = Effective depth of the concrete section.

d'= Distance from centroid of compressive steel to upper face of member

 d_f = Depth of FRP shear reinforcement.

 E_f , E_{fu} = Tensile modulus of elasticity of FRP.

 E_s = Modulus of elasticity of steel

 F_c , f_{cm} , f_c' , f_{cd} , f_{cu} = the cylinder compressive strength of concrete

 f_{fe} , f_{f} = Tensile strength of the FRP

 f_v , fs = Steel yield strength

h = Depth of concrete beam

h_f = Distance from extreme compression fibre to centroid of tension reinforcement

n = Number of plies of FRP reinforcement

 k_1 , K_2 = Modification factors

Kv= the bond-reduction coefficient

Le= the active bond length

 q_{fu} = The nominal shear strength of the FRP shear reinforcement

 $S_f = Spacing of FRP$ shear reinforcement (distance between the centerline of the strips).

 t_f = Nominal thickness of one ply of the FRP reinforcement

Vu= The shear capacity Vu of the shear strengthened RC beam

Vc= The shear resistance of the concrete and longitudinal steel reinforcements

Vs = The shear capacity of transverse steel reinforcements or bent-up steel bars

 V_f = The accurate prediction of the FRP shear contribution

 w_f = Width of the FRP reinforcing plies

 \mathcal{E}_{fu} *= Maximum strain in the FRP

 $\varepsilon_{\rm f}$, $\varepsilon_{\rm fe}$ = FRP strain

 \mathcal{E}_{bi} = Initial strain in concrete at the level of the FRP at service load level when installing the FRP

 \mathcal{E}_{s} = Strain of the steel reinforcement

 \mathcal{E}_{cu} = Ultimate concrete strain

 ϵ_{ef} = Effective strain in FRP reinforcement.

 $\gamma_f {=} \ Material \ strength \ reduction \ factor \ of \ FRP \ shear \ reinforcement.$

 $^{\gamma}s$ = Material safety factor for the steel reinforcement

 $^{\gamma}$ c = Material safety factor for the concrete

 $\rho_f = \text{FRP reinforcement ratio}$

 $\theta =$ Angle of diagonal crack with respect to the member axis

 α = Angle of inclination of FRP reinforcement to the longitudinal axis of the member

 β_1 = Coefficient accounting for the bond characteristics of the reinforcement

 ψ = Load combination factor, or stress block area coefficient

 δ_G = Stress block centroid coefficient

LIST OF FIGURES

	Page
Figure. (2-1) Idealized Tensile Stress-Strain Curves for Different FRP	10
Figure (3-1) tested beam details in flexural	33
Figure (3-2) tested beam details in shear	33
Figure (3-3) Position of strengthening in shear of tested beam	35
Figure (3-4) Position of strengthening in flexural of tested beam	35
Figure (3-5) sample of group of beams strengthened by GFRP in shear	36
Figure (3-6) sample of group of beams strengthened by CFRP in shear	36
Figure (3-7) sample of beams strengthened in flexural	37
Figure (3-8) steel reinforcement of specimens in Formwork	38
Figure (3-9) attach the FRP layers on bottom surface of concrete beam	38
Figure (3-10) U- wrapping shape of FRP	39
Figure (3-11) Super-plasticizer	41
Figure (3-12) Polystyrenes Foam	42
Figure (3-13) carbon fiber (CFRP)	44
Figure (3-14) glass fiber (GFRP)	44
Figure (3-15) Epoxy resin (Sikadur 330)	45
Figure (3-16) Epoxy paste (Sikadur -31CF)	45
Figure (3-17) loads position in flexural specimens	46
Figure (3-18) loads position in shear specimens	46
Figure (3-19) LVDT position to measure crack width in flexural specimens	47
Figure (3-20) LVDT position to measure crack width in shear specimens	47
Figure (3-21) strain gage position in flexural specimens	48
Figure (3-22) strain gage position in shear specimens	48
Figure (3-23) LVDT position to measure deflection in flexural specimens	48
Figure (3-24) LVDT position to measure deflection in shear specimens	48
Figure (4-1) Crack pattern & the failure of specimen CBS	55
Figure (4-2) Crack pattern & the failure of specimen CBF	56
Figure (4-3) Crack pattern in specimen BGS1	56
Figure (4-4) the failure in specimen BGS1	56
Figure (4-5) Crack pattern in specimen BGS2	57

Figure (4-6) The failure in specimen BGS2	57
Figure (4-7) Crack pattern in specimen BGS3	58
Figure (4-8) The failure in specimen BGS3	58
Figure (4-9) Crack pattern in specimen BCS1	59
Figure (4-10) The failure in specimen BCS1	59
Figure (4-11) Crack pattern in specimen BCS2	60
Figure (4-12) The failure in specimen BCS2	60
Figure (4-13) Crack pattern in specimen BCS3	61
Figure (4-14) The failure in specimen BCS3	61
Figure (4-15) Crack pattern in specimen BGF1	62
Figure (4-16) The failure in specimen BGF1	62
Figure (4-17) Crack pattern in specimen BGF2	63
Figure (4-18) The failure in specimen BGF2	63
Figure (4-19) Crack pattern in specimen BGF3	64
Figure (4-20) The failure in specimen BGF3	64
Figure (4-21) Crack pattern in specimen BCF1	65
Figure (4-22) The failure in specimen BCF1	65
Figure (4-23) Crack pattern in specimen BCF2	66
Figure (4-24) The failure in specimen BCF2	66
Figure (4-25) Crack pattern in specimen BCF3	67
Figure (4-26) The failure in specimen BCF3	67
Figure (4-27) Load – Deflection Curves of Specimens CBS, BGS1, BGS2	
and BGS3	70
Figure (4-28) Load – Deflection Curves of Specimens CBS, BCS1, BCS2	
and BCS3	70
Figure (4-29) Load – Deflection Curves of Specimens CBS, BGS1 and	
BCS1	71
Figure (4-30) Load – Deflection Curves of Specimens CBS, BGS2 and	
BCS2	71
Figure (4-31) Load – Deflection Curves of Specimens CBS, BGS3 and	
BCS3	72
Figure (4-32) Load – Deflection Curves of Specimens CBF, BGF1 and BGF2	
and BGF3	72

and BCF3BCF1 and BCF2	7
Figure (4-34) Load – Deflection Curves of Specimens CBF, BGF1 and	
BCF1	7
Figure (4-35) Load – Deflection Curves of Specimens CBF, BGF2 and	
BCF2	7
Figure (4-36) Load – Deflection Curves of Specimens CBF, BGF3 and BCF3	7
Figure (4-37) Load – Crack width Curves of Specimens CBS, BGS1, BGS2 and BGS3.	7
Figure (4-38) Load – Crack width Curves of Specimens CBS, BCS1, BCS2 and BCS3	7
Figure (4-39) Load – Crack width Curves of Specimens CBS, BGS1 and BCS1	7
Figure (4-40) Load – Crack width Curves of Specimens CBS, BGS2 and BCS2	7
Figure (4-41) Load – Crack width Curves of Specimens CBS, BGS3 and BCS3	7
Figure (4-42) Load – Crack width Curves of Specimens CBF, BGF1, BGF2 and BGF3	7
Figure (4-43) Load – Crack width Curves of Specimens CBF, BCF1, BCF2 and BCF3	8
Figure (4-44) Load – Crack width Curves of Specimens CBF, BGF1 and BCF1	8
Figure (4-45) Load – Crack width Curves of Specimens CBF, BGF2 and BCF2	8
Figure (4-46) Load – Crack width Curves of Specimens CBF, BGF3 and	
BCF3	8
Figure (4-47) Load – longitudinal steel strain Curves of Specimens CBS,	
BGS1, BGS2 and BGS3	8
Figure (4-48) Load – longitudinal steel strain Curves of Specimens CBS,	
BCS1, BCS2 and BCS3	8

Figure (4-49) Load – longitudinal steel strain Curves of Specimens CBS,
BGS1 and BCS1
Figure (4-50) Load – longitudinal steel strain Curves of Specimens CBS,
BGS2 and BCS2
Figure (4-51) Load – longitudinal steel strain Curves of Specimens CBS,
BGS3 and BCS3
Figure (4-52) Load – longitudinal steel strain Curves of Specimens CBF,
BGF1, BGF2 and BGF3
Figure (4-53) Load – longitudinal steel strain Curves of Specimens CBF,
BCF1, BCF2 and BCF3
Figure (4-54) Load – longitudinal steel strain Curves of Specimens CBF,
BGF1 and BCF1
Figure (4-55) Load – longitudinal steel strain Curves of Specimens CBF,
BGF2 and BCF2
Figure (4-56) Load – longitudinal steel strain Curves of Specimens CBF,
BGF3 and BCF3
Figure (4-57) Load – stirrup steel strain Curves of Specimens CBS, BGS1,
BGS2 and BGS3
Figure (4-58) Load – stirrup steel strain Curves of Specimens CBS, BCS1,
BCS2 and BCS3
Figure (4-59) Load – stirrup steel strain Curves of Specimens CBS, BGS1
and BCS1
Figure (4-60) Load – stirrup steel strain Curves of Specimens CBS, BGS2
and BCS2
Figure (4-61) Load – stirrup steel strain Curves of Specimens CBS, BGS3
and BCS3
Figure (4-62) Load – stirrup steel strain Curves of Specimens CBF, BGF1,
BGF2 and BGF3
Figure (4-63) Load – stirrup steel strain Curves of Specimens CBF, BCF1,
BCF2 and BCF3
Figure (4-64) Load – stirrup steel strain Curves of Specimens CBF, BGF1
and BCF1

Figure (4-65) Load – stirrup steel strain Curves of Specimens CBF, BGF2	
and BCF2	95
Figure (4-66) Load – stirrup steel strain Curves of Specimens CBF, BGF3	
and BCF3	95
Figure (4-67) The relation between width of U shape sheets of FRP and ratio	
of increasing in failure load %	96
Figure (4-68) The relation between number of FRP layers and ratio of	
increasing in failure load %	96
Figure (4-69) Summary of Failure Load for Tested Beams	97
Figure (4-70) Summary of Flexure cracking Load for Tested Beams	98
Figure (4-71) Summary of shear cracking Load for Tested Beams	98
Figure (5-1) Definition of variables required for calculating shear strength of	
FRP Composites	100
Figure (5-2) Illustration of the dimensional variables used in shear-strengthening	
calculations for repair, retrofit, or strengthening using FRP laminates	101
Figure (5-3): Contribution of FRP to shear capacity	102
Figure (5-4): Schematic illustration of reinforced concrete element	
strengthened in shear with FRP	103
Figure (5-5): Comparison of Pu between author's experimental results and	
design guide lines	104
Figure (5-6) the effect of width of GFRP & CFRP strips on the analytical results	105
Figure (5-7) Stress-strain curve for FRP	106
Figure (5-8) Stress and Strain distributions in a rectangular section subject to	
an ultimate flexural moment	107
Figure (5-9). Linear strain distribution	109
Figure (5-10) Analysis of cross section for the ultimate limit state in bending.	111
Figure (5-11): Comparison of Pu between author's experimental results and	
design guide lines	112
Figure (5-12) the effect of layers number of GFRP & CFRP strips on the	
analytical results	113

LIST OF TABLES

Table (3-1) Details of tested beams	34
Table (3-2) Material Quantities in kg/m3 for The LWC Specimens	40
Table (3-3) The cubes test results	42
Table (4-1) shows values of failure, shear cracking and flexural cracking loads	52
Table (4-2) shows the summary of results of all beams	97
Table (5-1) Comparison of Pu between author's experimental results and design guide lines	105
Table (5-2) Comparison of Pu between author's experimental results and design guide lines	113