

Investigative Study of the Relationship between Central Corneal Thickness and Axial Errors of Refraction

Thesis

Submitted for Partial Fulfillment of Master's Degree in Ophthalmology

By

Ahmad Abu El-Seoud Aly Hassan

M.B.B.Ch, Faculty of Medicine, October 6 University

Supervised by

Professor Dr. Mervat Salah Mourad

Emeritus Professor of Ophthalmology Faculty of Medicine – Ain Shams University

Assistant Professor Dr. Raafat Rayhan

Assistant Professor of Ophthalmology Faculty of Medicine – Ain Shams University

Dr. Mouamen Mostafa

Lecturer of Ophthalmology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Gracious and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor Dr. Meroat Salah Mourad**, Emeritus Professor of Ophthalmology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible.

I am also delighted to express my deepest gratitude and thanks to Assistant Professor Dr. Raafat Rayhan, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mouamen Mostafa**, Lecturer of Ophthalmology, Faculty of
Medicine, Ain Shams University, for his great help,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients who participated in this study.

Ahmad Abu El-Seoud Aly Hassan

List of Contents

Title	Page No.
List of Tables	5
List of Figures	8
List of Graphs	vii
List of Abbreviations	12
Introduction	1
Aim of the Work	18
Review of Literature	19
Patients and Methods	62
Results	66
Discussion	99
Summary	106
Conclusion	110
References	111
Arabic Summary	

List of Tables

Table No.	Title Po	ige No.
Table (1):	Important measurements of the hum	
	cornea used in refractive surgery	
Table (2):	Showing Commercially available anter	
	segment OCT platforms	
Table (3):	Systemic associations of high myopia	
Table (4):	Basic ocular data among 84 patients	
Table (5):	Refraction data and axial length among	
	patients	
Table (6):	CCT data among 84 patients	
Table (7):	Comparison between the 3 groups	
	regards basic ocular data using Krusk	
	Wallis and Chi square tests:	
Table (8):	Comparison between the 3 groups	
	regards refraction data and axial leng	•
	using Kruskal-Wallis test	
Table (9):	Comparison between the 3 groups	
	regards CCT data using Kruskal-Wal	
	test.	
Table (10):	Comparison between the 3 sub-groups	
	regards basic ocular data using Krusk	
	Wallis and Chi square tests	
Table (11):	Comparison between the 3 sub-groups	
	regards refraction data and axial leng	
	using Kruskal-Wallis test	
Table (12):	Comparison between the 3 subgroups	
	regards CCT data using Kruskal-Wal	llis
	test.	80
Table (13):	Comparison between the 3 subgroups	as
	regards basic ocular data using Krusk	
	Wallis and Chi square tests:	81

List of Tables

Table No.	Title	Page	No.
Table (14):	Comparison between the 3 subgroup regards refraction data and axial le	ength	
Table (15):	using Kruskal-Wallis test Comparison between the 3 subgroup regards CCT data using Kruskal-V	ps as	83
Table (16):	test	ween	85
Table (17):	Spearman's correlation analysis bet refraction data and CCT in myopia gr	ween	
Table (18):	Spearman's correlation analysis bet refraction data and age in hype	ween	
Table (19):	group:	ween	87
Table (20):	group	ween	88
Table (21):	group	ween	89
Table (22):	group:	ween	91
Table (23):	group.	 ween	91
Table (24):	groupLogistic regression model for the Fa	 ictors	93
Table (25):	affecting high myopia occurrence of Forward method: Logistic regression model for the Fa	actors	94
	affecting high hyperopia occurrence of Forward method.	_	94

List of Tables

Table No.	Title	Page No.
Table (26):	Roc-curve analysis to predict patients	
	high myopia.	95
Table (27):	Roc-curve analysis to predict patients	with
	high hyperopia	97
Table (28):	Comparison of correlation between diffe	rent
	variables in different studies	105

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Showing embryology of development of cornea, anterior chamber and pupillar membrane	
Figure (2):	Showing meridional section of the human cornea, stained with haematoxylin and eosin	ie h
Figure (3):	Scanning electron micrographs of th	
Figure (4):	Electron micrograph of mid-corner	
Figure (5):	Showing electron micrograph of the Descement s membrane of a 55-year-oll human 1n anteroposterior section showing a banded zone and non-banded	ne d n,
Figure (6):	zone	24
Figure (7): Figure (8):	human corneal endothelium	25 26 g
Figure (9):	measurement (in micrometers) Showing iPac TM pachymeter b Reichert	27 y
Figure (10):	Showing ORA signal for a norma cornea	al
Figure (11): Figure (12):	Showing ocular response analyzer	is n
	encompassing a 15-mm wide sector	
Figure (13):	Showing optics of confocal microscopy.	
Figure (14):	Showing orbscan slit image	
Figure (15):	Showing a diagram of scheimpflu	g 38

List of Figures (Cont...)

Fig. No.	Title	Page 1	No.
Figure (16):	Showing topographic and pentac	am	
	analysis of a patient with cent		
	corneal scar		39
Figure (17):	Showing Visante image of a narr		
	angle followed by implantation of		4.0
T' (10)	phakic IOL		40
Figure (18):	Showing Visante image from a pati		11
Eigen (10).	with a history of LASIK		
Figure (19): Figure (20):	Diagram showing optics of myopia Axial CT showing left poster		40
r igure (20):	staphyloma		50
Figure (21):	Shallow retinal detachment confined		50
1 1gui (21).	posterior pole caused by myopic-rela		
	macular hole		50
Figure (22):	Tigroid fundus		
Figure (23):	Lacquer cracks		
Figure (24):	Coin haemorrhage		
Figure (25):	Fuchs spot		52
Figure (26):	Diagram showing optics of hyperopia		53
Figure (27):	Fundus picture of pseudopapillitis	in	
	hyperopic eye		55
Figure (28):	Keratoconus		58
Figure (29):	Showing pellucid margi		
	degeneration		59
Figure (30):	-		
	type of contour abnormality can		
	helpful in recognizing the type of ecta		00
E' (91)	disorder		60
Figure (31):	A slit-lamp photograph shows loss		
	stromal thickness, stromal haze, a		61
Figure (32):	posterior corneal craterUltra-sound of a high myopic eye w		01
riguie (02):	AL 27 02 mm	/ 1 U11	72

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (33):	Pentacam of an emmetropic case	with
	CCT 600 nm	74
Figure (34):	Pentacam of a high myopic eye	with
	CCT 502 nm	75
Figure (35):	Pentacam of a moderate hyperopic	eye
	with CCT 554 nm.	75
Figure (36):	Ultra-sound A-scan of a high my	ropic
	eye with AL 26.32 mm.	78
Figure (37):	Pentacam of a moderate myopic	eye
	with CCT 565 nm	80
Figure (38):	Ultrasound A-scan of mode	rate
	hyperopic eye with AL 21.80 mm	83
Figure (39):	Pentacam of a moderate hyperopic	eye
	with CCT 519 nm.	85

List of Graphs

Graph No.	Title Page	No.
Graph (1):	Comparison between the 3 groups as regards age	71
Graph (2):	Comparison between the 3 groups as regards gender	
Graph (3):	Comparison between the 3 groups as regards sphere	
Graph (4):	Comparison between the 3 groups as regards axial length	
Graph (5):	Comparison between the 3 groups as regards CCT.	
Graph (6):	Comparison between the 3 subgroups as regards sphere.	
Graph (7):	Comparison between the 3 subgroups as regards axial length	
Graph (8):	Comparison between the 3 subgroups as regards age.	
Graph (9):	Comparison between the 3 subgroups as regards sex	82
Graph (10):	Comparison between the 3 subgroups as regards sphere.	84
Graph (11):	Comparison between the 3 subgroups as regards axial length	
Graph (12):	Correlation between sphere and age in emmetropia group.	
Graph (13):		
Graph (14):	Correlation between sphere and age in all patients group.	
Graph (15):	-	
Graph (16):	ROC curve of axial length.	
	ROC curves of axial length and CCT	

List of Abbreviations

Abb.	Full term		
AC	Anterior Chamber Depth		
<i>AL</i>	-		
AS-OCT	· ·	ical	Coherence
	Tomography		
BZ	Bowman's Zone/Banded Zone	e	
<i>CCT</i>	Central Corneal Thickness		
<i>CH</i>	Corneal Hysteresis		
CNV	$ Choroidal\ Neovascularization$	ı	
<i>CRF</i>	Corneal Resistance Factor		
<i>CT</i>	$ Computed \ Tomography$		
D	Diopter		
<i>DM</i>	Descemet's Membrane		
<i>EP</i>	Epithelium		
<i>En</i>	Endothelium		
FD-OCT	Fourier-Domain OCT		
HR	High Resolution		
<i>IMT</i>	Implantable Miniature Telesc	ope	
<i>IOL</i>	Intra-Ocular Lens		
<i>IOP</i>	Intra-Ocular Pressure		
<i>IQR</i>	Interquartile range		
<i>K</i>	Keratocyte		
<i>LASIK</i>	Laser-assisted in situ Keraton	nileus is	1
<i>LS-CM</i>	Laser-Scanning Confocal Mic	roscopy	,
<i>MHz</i>	Mega hertz		
Mm	Millimeter		
MRI	$ Magnetic\ Resonance\ Imaging$		
N	Nucleus		
<i>Nm</i>	Nanometer		
<i>NBZ</i>	Non-Banded Zone		

List of Abbreviations (cont...)

Abb.	Full term
OCT	Optical Coherence Tomography
ORA	Ocular Response Analyzer
<i>RD</i>	$Retinal\ Detachment$
<i>RI</i>	Refractive Index
<i>ROC</i>	Receiver Operating Characteristic
<i>RPE</i>	Retinal Pigment Epithelium
S	Stroma
<i>SD</i>	Standard Deviation
<i>SD-OCT</i>	$ Spectral ext{-}Domain\ OCT$
SE	Spherical Equivalence
SSCM	Slit-Scanning Confocal Microscopy
<i>TD-OCT</i>	Time-Domain OCT
<i>TSCM</i>	Tandem Scanning Confocal Microscopy
<i>UBM</i>	Ultrasonic Biomicroscopy
<i>US</i>	Ultra sound
<i>VHF</i>	Very High Frequency

INTRODUCTION

The cornea is a transparent, avascular tissue that measures 11–12 mm horizontally and 10–11 mm vertically (1). It is thinnest centrally (around 535 microns) and thickest peripherally (660 microns) (2). It is a complex structure that has a protective role and is responsible for 74% of the optical power of the eye contributing 43.25 diopters (D) of the total 58.60 dioptric power of a normal human eye (1).

The normal cornea is free of blood vessels. For its nutrition, it depends on glucose diffusing from the aqueous humor and oxygen diffusing through the tear film. In addition, the peripheral cornea is supplied with oxygen from the limbal circulation. The cornea is composed of six layers, which are epithelium, Bowman's layer, stroma, Dua's layer, Descemet's membrane and endothelium. (3)

The average axial length of newborn's eyeball is about 16 millimeters. In an infant, the eye grows slightly to a length of approximately 19.5 millimeters. The eye continues to grow, gradually, to the length of about 24-25 millimeters. (4)

An interplay among corneal power, lens power, anterior chamber depth, and axial length determines an individual's refractive status. All four elements change continuously as the eye grows. (5)

On average, babies are born with about 3.00 D of hyperopia. In the first few months of life, this hyperopia may increase slightly, but it then declines to an average of about 1.00 D of hyperopia by the end of the first year because of marked changes in corneal and lenticular powers, as well as axial length growth. By the end of the second year, the anterior segment attains adult proportions; however, the curvatures of the refracting surfaces continue to change measurably. (5)

One study found that average corneal power decreased 0.10–0.20 D and lens power decreased about 1.80 D between ages 3 years and 14 years. From birth to age 6 years, the axial length of the eye grows by approximately 5 mm; thus, one might expect a high prevalence of myopia in children. However, most children's eyes are actually emmetropic, with only a 2% incidence of myopia at 6 years. This phenomenon is due to a still undetermined mechanism called emmetropization. During this period of eye growth, a compensatory loss of 4.00 D of corneal power and 2.00 D of lens power keeps most eyes close to emmetropia. It appears that the immature human eye develops so as to reduce refractive errors. (6)

Central corneal thickness (CCT) is an important indicator of corneal health status and is an essential tool in the assessment and management of corneal diseases and helps to estimate the corneal barrier and endothelial pump function. (7)