

Cairo University Faculty of Veterinary Medicine

Molecular Epidemiological Studies on Avian Influenza (H9N2) and Infectious Bronchitis (IB) Viruses Affecting Respiratory System in Chickens in Lebanon

Thesis submitted by

Riham H. Bassam

B. Sc. Of Veterinary Medicine/ Hama University (1999) MVSc. of Veterinary Medical Science (Virology)/ Cairo University (2011)

For the Degree of the (Ph.D.) in Veterinary Medical Science/ Virology

Under supervision of:

Prof. Dr. Ahmed A. El-Sanousi

Professor of Virology Virology Department Faculty of Veterinary Medicine Cairo University

Prof. Dr. Hussein A. Hussein

Professor of Virology
Vice Dean of Post Graduate Studies
and Research Affairs
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Mohamed M. Amer

Professor of poultry diseases Poultry Diseases Department Faculty of Veterinary Medicine Cairo University

Cairo University Faculty of Veterinary Medicine

Supervision sheet

Prof. Dr. Ahmed A. El-Sanousi

Professor of Virology Department of Virology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Hussein A. Hussein

Professor of Virology Vice Dean of Graduate Studies and Research Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mohamed M. Amer

Professor of Poultry Diseases Department of Poultry Diseases Faculty of Veterinary Medicine Cairo University

Cairo University Faculty of Veterinary Medicine

Name: Riham H. Bassam

Date of birth: 05/06/1969

Place of birth: Bent Jubeil/Lebanon

Nationality: Lebanese

Degree: Philosophy of Doctor in Veterinary Science- Virology

Specification: Virology

Title Molecular Epidemiological Studies on Avian Influenza (H9N2) and

Infectious Bronchitis (IB) Viruses Affecting Respiratory System in

Chickens in Lebanon

Supervision:

Prof. Dr. Ahmed A. El-Sanousi

Professor of Virology, Department of Virology, Faculty of Veterinary Medicine, Cairo

University.

Prof. Dr. Hussein A. Hussein

Professor of Virology, Vice Dean of Graduate Studies and Research, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Mohamed M. Amer

Professor of Poultry Diseases, Department of Poultry Diseases, Faculty of Veterinary

Medicine, Cairo University.

Abstract

Avian influenza and infectious bronchitis viruses are pathogens with economic importance in poultry industry. To determine the role of these viruses in respiratory diseases outbreak in Lebanese poultry farms, 347 serum samples from 26 flocks with respiratory disease symptoms were examined by ELISA tests. Some of these flocks had received influenza A and infectious bronchitis viruses' vaccines. The overall antibody titers and of AIV H9 subtype and infectious bronchitis viruses were recorded. The results revealed the presence of both viruses in some flocks at the same time.

Also; tracheal swabs and tissue organs were collected from 60 poultry flocks from different ages, different type of raising which were housed in different Governorates in Lebanon including, broilers, layer hens, breeders, backyard chickens and ducks for molecular characterization by real time- RT-PCR. Sequence and phylogenetic analysis of some of the H9N2 and IBV-positive samples have been conducted. All flocks had shown respiratory signs and mortality. The real time- RT-PCR results have shown 12 flocks to be positive to infection with IBV and eight were positive to infection with H9N2. A new lineage of H9N2 virus from the last analysed sequences and VAR2 IBV has been detected for the first time among Lebanese poultry flocks and had shown 99% similarity with VAR2 genotype present in Egypt. even in vaccinated chickens against H9N2 and IBV respectively.

Conclusion: H9N2 and VAR2-IBV are reported to be circulating and affecting chickens with mortalities and loss of production in Lebanese poultry farming.

Key words: H9N2, IBV, Lebanon, respiratory disease, ELISA, rt-RT-PCR.

Dedication

To my Beloved Mother,

My Sisters Abir & Lina

My Son Bassem

Acknowledgment

I would like firstly to thank my supervisors for their help and support to finish my work:

Prof. Dr. Ahmed A. El-Sanousi; Professor of Virology, Department of Virology, Faculty of Veterinary Medicine, Cairo University, for his dedication, endless assistance and support.

Prof. Dr. Hussein A. Hussein; Professor of Virology and Vice Dean of Post Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University, for his support and help.

Prof. Dr. Mohamed M. Amer; Professor of Poultry Diseases, Department of Poultry Disease, Faculty of Veterinary Medicine, Cairo University, for his kindness, help and continuous encouragements to finish this work.

Prof. Dr. Mumtaz Shahin Director of Animal Health Research Institute, Dokki, Giza, Egypt for his support.

Dr. Jamal Khazal; Owner of Lebanvet company in Lebanon, for his continuous assistance.

JOVAC company of vaccines manufacturing in Jordan; for providing ELISA kits for free.

Dr. Ibrahim Habaka, Dr. Khaled El-Nasser, and **Eng. Mohamed Fakhoury** veterinary doctors in the field of poultry, for their assistance in field.

Mr. Rabeh Karazoun lab technician for his great efforts with me during ELISA work in Lebanvet Company.

Contents

Dedication	. [
Acknowledgment	. II
Contents	. []]
List of Abbreviations	\sqrt{s}
List of tables	IX
List of figures	X
Chapter (1) Introduction	. 1
Chapter (2) Review of Literature	
Historical Overview	5
History and Distribution of AIVH9N2	5
History and Distribution of IBV	. 6
Overview on AI H9N2 and IB Viruses	8
Overview on AIV H9N2	. 8
Classification and Nomenclature of AIV H9N2	. 8
Morphology and Structure of AIV	. 9
AIV H9N2 Genome Organization and Encoded Proteins	. 11
Overview on IBV	. 16
Classification and Nomenclature of IBV	. 16
Morphology and Structure of IBV	. 16
IBV Genome Organization and Encoded Proteins	. 19
Overview of Antigenic Proteins	. 21
Overview of HA Protein; Structure and Function	. 21
Overview of IBV S Protein; Structure and Function	. 22
Evolution of the Viruses	24
Evolution of AIV H9N2	24
Evolution of IBV	28
Host Range and Interspecies Transmission	31
AIV H9N2 Host Range and Interspecies Transmission	31

	IBV Host Range and Interspecies Transmission	35
Di	agnosis of AI H9N2 and IB Viruses	38
	Diagnosis of AIV H9N2 Virus	38
	Clinical Signs and Post Mortem Lesions	38
	AIV H9N2 Laboratory Diagnosis	40
	AIV H9N2 Isolation and Propagation	40
	EM for the Identification of AIV	41
	AIV Serological Diagnosis	42
	Agar Gel Immunodiffusion Test (AGID)	43
	HI Assay	43
	Enzyme Linked Immunosorbent Assay (ELISA)	44
	AIV H9N2 Molecular Diagnosis	47
	PCR-Based Methods	47
	Conventional RT-PCR Technique	47
	Real time RT-PCR (rt-RT-PCR)	48
	M/RT-PCR for the Detection of AIV Subtypes	49
	Nucleic Acid Sequence-Based Methods	49
	DNA Microarray	49
	Pyrosequencing	50
	Diagnosis of IBV	50
	IBV Clinical Signs and Post Mortem Lesions	50
	IBV Laboratory Diagnosis	51
	EM for the Detection of IBV	52
	IBV Isolation and Propagation	52
	Isolation of IBV in ECE.	52
	Cultivation of IBV in Trachea Rings or Tracheal Organ Culture	
	(TOCs)	53
	IBV Serological Diagnosis	54
	HI test	54
	ELISA Assay	54
	AGID Test	55

Immunofluorescent Assay (IFA)	55
Immunoperoxidase Assay (IPA)	56
Virus Neutralization Test (VNT)	56
IBV Molecular Diagnosis	56
RT-PCR	57
Nested RT-PCR	57
rt-RT-PCR	58
IBV Strain Classification	58
Chapter (3) Published Papers	60
Chapter (4) Discussion	61
Chapter (5) Conclusions and Recommendations	75
Chapter (6) summary	77
Chapter (7) References	81
الملخص العربي المستخلص العربي	
المستخلص العربي	

List of Abbreviations

Ab/s	Anti-body/ies
AC-ELISA	Antigen capture-enzyme linked immunosorbent assay
ACoVs	Avian coronaviruses
Ag-C-ELISA	Antigen-capture ELISA
AGID	Agar gel immunodiffusion
AI	Avian influenza
AIV	Avian influenza virus
Au	Gold
bELISA	Blocking ELISA
BLAST	Basic local alignment search tool
CAM	Chorioallantoic membrane
cDNA	Complementary DNA or copy DNA
CL ^{pro}	Chymotrypsin-like proteinase
CoV/s	Corona virus/es
CT	cycle threshold
CTD	C-terminal domain
DAS-ELISA	Double antibody sandwich-ELISA
DIVA	Differentiating infection from vaccination administration
dsDNA	Double stranded DNA
E	Small envelope protein
ECE	Embryonated chicken eggs
ELISA	enzyme linked immunosorbent assay
EM	Electron microscopy
FP	Fusion peptide
H9N2	hemagglutinin 9, neuraminidase 2
НА	Hemagglutinin/ hemagglutination
Н	Hemagglutination inhibition
HPAI	Highly pathogenic avian influenza
HR	Heptad-Repeat region
HRP	Horse radish peroxidase
HVR	Hypervariable region

IA	Influenza virus
IAV	Influenza virus type A
IBD	Infectious bursal disease
IBV	Infectious bronchitis virus
IFA	Immunofluorescent assay
ILTV	Infectious laryngotrachitis virus
IPA	Immunoperoxidase assay
LP	Low pathogenic
LPAI	Low pathogenic avian influenza
LPM	Live poultry market
LT	Laryngotrachitis
M or M1	Membrane/ matrix protein
M2	Membrane ion channel
Mab/s	Monoclonal antibody/ies
Mass	Massachusetts
M/RT-PCR	Multiplex RT-PCR
N	Nucleoprotein
NA	Neuraminidase
NASBA	Nucleic acid sequencing-based amplification
NDV	Newcastle disease virus
NEP	Nuclear export protein
NES	Nuclear export signal
NP	Nucleoprotein
NS	Non-structural
nsps	Nonstructural proteins
NTD	N-terminal domain
ORF/s	Open reading frame/s
ORT	ornithobacterium rhinotracheitis
P	Polymerase
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction

PhCoV/s	Pheasant coronavirus/es
PLpro	Papin-like proteinase
RBCs	Red blood cells
RBM	Receptor binding motif
RBS	Receptor binding site
RdRp	RNA dependent RNA polymerase
RFLP	Restriction enzyme fragment length polymorphism
RNP	Ribonucleoprotein
Rt-RT-PCR	Real time reverse transcriptase polymerase chain reaction
RT	Reverse transcriptase
RT-PCR	Reverse transcriptase-polymerase chain reaction
S	Spike
S1-CTD	S1- C-terminal domain
S1-NTD	S1- N-terminal domain
SARS-CoV	Severe Acute Respiratory Syndrome Coronavirus
SD/1, 2	Subdomain/ 1-2
S-ELISA	Sandwich ELISA
SP	Signal peptide
SPF	Specific pathogen free
ssRNA	Single stranded RNA
TCoV/s	Turkey coronavirus/es
TEM	Transmission electron microscope
TM	Transmembrane
TOC	Tracheal organ culture
UK	United Kingdome
UTR	Untranslated region
VI	Virus isolation
VLP/s	Virus-like particle/s
VN	Virus neutralization
VNT	Virus neutralization test
vRNP/s	Viral ribonucleoprotein/s

List of Tables

Tables of Chapter (3) published paper (1): Serosurveillance and Molecular Characterization of H9N2 Avian Influenza Virus in Lebanon

Table No.	Title	Page
Tab. 1	Oligonucleotide Primers and probes. Primers and	14
	probes used were supplied from Metabion (Germany).	
Tab. 2	Data of tested flocks with results of ELIZA and rt-RT-	14
	PCR for AI-H9	

Tables of Chapter (3) published paper (2): Molecular Characterization of VAR2 among IBV Infected poultry in Lebanon

Table No.	Title	Page
Tab. 1	Primers and probes used for IBV rt-RT-PCR test	12
Tab. 2	Primers used in RT-PCR (one step RT-PCR) and sequence reaction of spike (S1) gene of IBV	12
Tab. 3	Main ELISA titers against IB in vaccinated and non-vaccinated flock	12
Tab. 4	Cycle threshold obtained in rt-RT-PCR testing for IBV in the collected samples from 5 Governorates in Lebanon	13

List of Figures

Figures of Chapter (2); Review of Literature

Figure No.	Title	Page
Fig. 1	Structure of AIV	9
Fig. 2	Crystal structure of HA trimer	10
Fig. 3	The NA of AIVs	11
Fig. 4	IA virus virion and genome	15
Fig. 5	AIV 8 segments & their encoded proteins	17
Fig. 6	Schematic diagram of IBV particle	18
Fig. 7	Classical genome organization of IBV-Ark-DPI	20
Fig. 8	Recombination event in the IBV genome	31
Fig. 9	Lesions of natural field cases of infection with H9N2 AIV	39
Fig. 10	TEM of AIV H5N1 negative cells	41
Fig.11a	Electron micrographs of HPAI H5N1	42
Fig.11b	AIVH9N2 under EM	43
Fig. 12	post mortem findings in chickens infected with IBV	51
Fig. 13	Infection of chicken with variant strains of IBV	52
Fig. 14	Coronaviruses under EM (crown like shape)	53

Figures of Chapter (3) published paper (1): Serosurveillance and Molecular Characterization of H9N2 Avian Influenza Virus in Lebanon

Figure No.	Title	Page
Fig. 1	clinical signs in broilers	13
Fig. 2	clinical signs in layers	13
Fig. 3	Lesions of natural field cases suspected of being infected with H9N2	13
Fig. 4	Bayesian phylogenetic tree of the hemagglutinin (HA) gene of avian influenza A H9N2	15

Figures of Chapter (3) published paper (2): Molecular Characterization of VAR2 among IBV Infected poultry in Lebanon

Figure No.	Title	Page
Figure. 1	Phylogeny tree for the sequenced IBV samples	14

Chapter (1)

Introduction