

Cairo University
Faculty of Veterinary Medicine
Department of Medicine and Infectious Diseases

Some clinical and epidemiological studies on Strangles in equines

Thesis presented by

Osama Mahmoud Mohammad

(B.V.Sc. Cairo University 2007)
For the degree of M.V.Sc.
(Infectious diseases)

Under supervision of

Prof. Dr. Diea Gamal El-dien Abo El-Hassan

Professor of Infectious Diseases Faculty of Veterinary Medicine Cairo University

Prof Dr. Amal Abd-Elaziz El-Molla

Professor of Infectious Diseases Faculty of Veterinary Medicine Cairo University

Dr. Wagdy R. El-Ashmawy

Ass. Prof. of Infectious Diseases Faculty of Veterinary Medicine Cairo University

(2019)

Supervision sheet

Under supervision of

Prof. Dr.

Diea Gamal El-dien Abo El-Hassan

Professor of Infectious Diseases Faculty of Veterinary Medicine Cairo University

Prof Dr. Amal Abd-Elaziz El-Molla

Professor of Infectious Diseases Faculty of Veterinary Medicine Cairo University

Dr. Wagdy R. El-Ashmawy

Ass. Prof. of Infectious Diseases Faculty of Veterinary Medicine Cairo University

(2019)

Cairo University Faculty of Veterinary Medicine

Department of Medicine and Infectious Diseases

Name: Osama Mahmoud Mohamed Abdellatief

Date of birth: 03/06/1984 Nationality: Egyptian

Degree: Master Veterinary Science **Specialization:** Infectious Diseases

Title of the thesis: Some clinical and epidemiological studies on Strangles in quines

Supervision:

Prof. Dr. Diea Gamal El-dien Abo El-Hassan Professor of Infectious diseases, Faculty of Veterinary Medicine, Cairo University

Prof Dr. Amal Abd-Elaziz El-Molla Professor of Infectious diseases, Faculty of

Veterinary Medicine, Cairo University

Dr. Wagdy R. El-Ashmawy Assistant. Prof. of Infectious Diseases, Faculty of Veterinary Medicine, Cairo University

Abstract

Present study was undertaken to study the incidence of β-haemolytic streptococci infection in equine, especially *Streptococcus equi* subsp. *Equi* infection (strangles). On clinical examination of a community of 524 Arabian foals and horses in Cairo – Egypt, a total of 164 animals were detected showing respiratory signs resemble that of Strangles (31.3 %) of which 62 (11.8 %) showed respiratory signs and lymph nodes abscessation. Two hundred and twenty-six swabs;164 nasopharyngeal, 31submaxillary lymph node pus and 31 retropharyngeal lymph node pus; were collected from 164 foals and horses showing respiratory signs and/ or abscessed lymph nodes for Streptococci isolation and PCR confirmation.

A total of 150 isolates of Streptococci were recovered from 226 samples with sample-wise prevalence of (66.4%). Out of these isolates; 124 (82.7%) were identified as *Streptococcus equi* subsp. *equi*, 26 (17.3%) *S. equi* subsp. *zooepidemicus* and no *S. dysgalactiae* subsp. *equisimilis* were identified.

The incidence of *S. equi* subsp. *Equi* and *S. equi* subsp. *Zooepidemicus* infection among the total animal population, in the present study, was 11.83 and 4.96 % respectively. PCR technique showed high sensitivity and specificity for the detection of *S. equi* species in the examined samples.

KEYWORDS: β-haemolytic streptococci, *Streptococcus.equi*, *Streptococcus zooepdemicus*, *Streptococcus equisimilis*, horses, Strangles, incidence, clinical signs, PCR, Cairo, Egypt.

Dedication

I dedicate this work to my parents, wife, sons and siblings for all the support they lovely offered during my post-graduate studies.

ACKNOWLEDGMENT

I am grateful to Allah Almighty the most beneficent for his graciousness bestowed upon me and the opportunity given to study and complete this thesis.

Frist, I would like to thank my family for their love and support, and without them I could not achieve this work

No words can adequately express my sincere gratitude and great appreciation to my supervisor **Prof.** Diea Gamal Eldien Abo El-Hassan who offered me a lot of his time and who devoted his experience to provide me with the best possible pieces of advice and suggestion to this work.

My deepest thanks to my supervisor **Prof. Amal Abdelaziz El-Molla** for her precious supervision, helpful suggestion, kind advices, criticism, continuous encouragement

I would like to thank heartily **Dr. Wagdy Rady El-Ashmawy** Faculty of Veterinary Medicine-Cairo University for his help, helpful suggestion, and kind advices specially in practical work

List of Abbreviations

(n = 1010)	Number = 1010
°C	
	Degree centigree Female
Q 1	
	Male
A.D	after death
B.C.	before Christ
bp	Base pair
CBC	Complete Blood Count
DNA	Deoxyribonucleic acid
e.g.	exempli gratia
ELISA	Enzyme Linked Immunosorbant Assay
et al.,	and others.
F	Female
gm	Gram
i.e	introduce examples
IgA	Immunoglobulin A
IgG	Immunoglobulin G
IM	Intramuscular
IU	International unit
IV	Intravascular
kg	Kilogram
M	Male
mg	Milligram
MHz	Megahertz
mm	Millimeter
MRI	magnetic resonance imaging
No.	Number
NSAIDs	Non-steroidal anti-inflammatory drugs
PCR	Polymerase Chain Reaction
pH	potential of Hydrogen
PO	Per os
q6h	Every 6 hours
RT-PCR	reverse transcription- Polymerase Chain Reaction
S. dysgalactiae	Streptococcus dysagalactia
S. equi subsp. equi	Streptococcus equi subspecies equi
S. equi subsp. equi	Streptococcus equi
T	Total
UK	United Kingdom
β-haemolytic	Beta-haemolytic
	· ·
μm	Micrometer

Table of contents

No.	Title	page
1	Introduction	1
2	Literature	7
	2.1. History background of Strangles	7
	2.2. Epidemiology of strangles	7
	2.3. Etiology and pathogenesis	14
	2.4. Clinical picture	18
	2.5. Diagnosis of strangles	24
	2.6. Prevention and control of Strangles	31
3	Material and Methods	37
	3.1. Material	37
	3.1.1. Animals	37
	3.1.2. Samples	37
	3.1.3. Bacteriological media for isolation.	40
	3.1.3.1. Cary-Blair medium®, (Oxoid)	40
	3.1.3.2. MacConkey Agar®, (Oxoid)	40
	3.1.3.3. Blood Agar Base®, (Oxoid)	40
	3.1.3.4. Brain Heart Infusion Broth®, (Oxoid)	41
	3.1.4. Gram's stain	41
	3.1.5. Reagents for Biochemical identification	41
	3.1.6. DNA extraction	42
	3.1.6.1. S. equi standard strain	42
	3.1.6.2. extraction kit	42
	3.1.6.3. Equipment and Apparatus.	42
	3.1.6.4. <i>PCR</i> primers	43
	3.2. Methods	44

	3.2.1. Study design	44
	3.2.2. Clinical examination	44
	3.2.3. Samples preparation	46
	3.2.4. Bacterial culturing	46
	3.2.4.1. Brain Heart Infusion broth	46
	3.2.4.2. MacConkey Agar	46
	3.2.4.3. Blood agar Medium	47
	3.2.5. Isolates identification	47
	3.2.5.1. Morphological Identification	47
	3.2.5.2. Biochemical Identification	48
	3.2.5.2.1. Catalase test	48
	3.2.5.2.2. Oxidase test	48
	3.2.5.2.3. Sugar fermentation test	48
	3.2.6. Molecular Identification of bacterial	49
	isolates	47
	3.2.7. Statistical analysis	50
4	Results	51
	4.1. Clinical Examination	51
	4.2. Bacteriological identification	61
	4.2.1. Morphology of the obtained bacterial	61
	isolates	
	4.2.2.Biochemical Identification	62
	4.3. Molecular Confirmation for the obtained	79
	isolates using PCR	
	4.3.1. Confirmation for the Streptococcus equi	79
	spp. Isolates	

	4.3.2. Confirmation of the <i>Streptococcus equi</i> subsp. equi isolates	80
	4.4.Incidence of Streptococcus equi sub spp. equi and Streptococcus equi subspp. zooepidemics infection	81
	4.4.1. Incidence of <i>Streptococcus equi</i> sub spp. <i>equi</i> infection (Strangles)	81
	4.4.2. Incidence of <i>Streptococcus equi</i> sub spp. zooepidemics infection	82
5	Discussion	85
6	CONCLUSION	95
7	Summary	97
8	References	101
9	الملخص العربي	2-1

List of Tables

No.	Title	page
1	Animals	38
2	Samples	39
3	Respiratory signs among the clinically examined age	55
	categories.	
4	Respiratory signs among clinically examined animals	55
	and environmental season categories.	
5	Respiratory signs among examined animals in	56
	relation to sex	
6	Lymph Nodes abscessation in relation to age groups	56
7	Lymph Nodes abscessation in relation to	56
	environmental seasons	
8	Lymph Nodes abscessation in relation to sex	57
9	Streptococcus equi spp. isolates in relation to age	67
	groups	
10	Streptococcus equi spp. isolates in relation to	68
	environmental seasons.	
11	Streptococcus equi spp. isolates in relation to sex.	68
12	Total S. equi subsp. equi and S. equi subsp.	69
	Zooepidemicus isolates in relation to sample origin	
13	Total S. equi subsp. equi and S. equi subsp.	69
	Zooepidemicus isolates in relation to age	
14	S. equi subsp. equi and S. equi subsp. Zooepidemicus	70
	isolates in relation to age and sample origin	

15	Total S. equi subsp. equi and S. equi subsp. Zooepidemicus isolates in relation to environmental seasons	71
16	S. equi subsp. equi and S. equi subsp. Zooepidemicus isolates in relation to the environmental seasons and sample origen	72
17	Total S. equi subsp. equi and S. equi subsp. Zooepidemicus isolates in relation to sex	72
18	S. equi subsp. equi and S. equi subsp. Zooepidemicus isolates in relation to sex and sample origin	73
19	PCR-1 assay	79
20	PCR2 assay.	80
21	Incidence of <i>Streptococcus equi</i> sub spp. <i>equi</i> infection (Strangles) in relation to age, season and sex	83
22	Incidence of Streptococcus equi subspp. zooepidemics infection in relation to age, season and sex	83

List of Figures

No	Title	Page
1	Respiratory signs and Lymph node abscesses among clinically	57
	examined individuals	
2	Respiratory signs and Lymph node affections among clinically	58
	examined foals and horses.	
3	Respiratory signs and Lymph node affections among clinically	58
	examined foals in different seasons	
4	Percent of Streptococcus equi isolates in relation to age	74
5	Streptococcus equi spp. isolates in relation to age categories	74
6	Streptococcus equi spp. in relation to season	75
7	S. equi spp. in relation to seasons	75
8	Total isolates of S. equi subspp. equi and S. equi subspp.	76
	zooepidemicus	
9	Total S.equi subspp. equi and S. equi subspp. zooepidemicus	76
	relation to origin	
10	Total S.equi subspp. equi and S. equi subspp. zooepidemicus	77
	relation to age categories	
11	Percent S.equi subspp. equi and S. equi subspp. zooepidemicus	77
	relation to age and sample origin	
12	Total S.equi subspp. equi and S. equi subspp. zooepidemicus	78
	relation to season	
13	Percent S.equi subspp. equi and S. equi subspp. zooepidemicus	78
	relation to season and sample origin	
14	Total S.equi subspp. equi and S. equi subspp. zooepidemicus	79
	isolates in relation to sex	
15	Incidence of S.equi and S. zooepidemicus	82
16	Incidence of S.equi in relation to age, season and sex	84
17	Incidence of S. zooepidemicus in relation to age, season and sex	84