

CFD ANALYSIS OPF THERMODYNAMIC BEHAVIOUR OF THERMAL-LAG ENGINE COMPARED WITH STIRLING ENGINES

By

Eng. Muhamad Salaheldin Muhamad Mustafa Eldebawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

CFD ANALYSIS OF THERMODYNAMIC BEHAVIOUR OF THERMAL-LAG ENGINE COMPARED WITH STIRLING ENGINES

By Eng. Muhamad Salaheldin Muhamad Mustafa Eldebawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Karam Ramzy Beshay Prof. Dr. Essam E. Khalil Hassan Khalil

Professor of Mechanical Power Engineering Faculty of Engineering, Cairo University Professor of Mechanical Power Engineering Faculty of Engineering, Cairo University

CFD ANALYSIS OF THERMODYNAMIC BEHAVIOUR OF THERMAL-LAG ENGINE COMPARED WITH STIRLING ENGINES

By

Eng. Muhamad Salaheldin Muhamad Mustafa Eldebawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Mechanical Power Engineering

Approved by the Examining Committee

Prof. Dr. Karam Ramzy Beshay

Thesis Main Advisor

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Essam E. Khalil Hassan Khalil

Advisor

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Abdelhafez Hassanein Abdelhafez Inte

Internal Examiner

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Adel Abdelmalek Elahwany

External Examiner

Professor of Mechanical Power Engineering, Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Muhamad Salaheldin Muhamad Mustafa Eldebawy

Date of Birth: 09/09/1987 **Nationality:** Egyptian

E-mail: Muhamad.eldebawy@gmail.com

 Phone:
 00201008048544

 Address:
 Maadi, Cairo

 Registration Date:
 01/03/2014

 Awarding Date:
 22/05/2019

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Karam Ramzy Beshay

Prof. Essam E. Khalil Hassan Khalil

Examiners:

Prof. Karam Ramzy Beshay (Thesis main advisor) Prof. Essam E. Khalil Hassan Khalil (advisor)

Prof. Abdelhafez Hassanein Abdelhafez (Internal examiner) Prof. Adel Abdelmalek Elahwany (External examiner)

Title of Thesis:

CFD Analysis of thermodynamic behaviour of Thermal-lag engine compared with Stirling engines

Key Words:

Stirling engines; Thermal-lag engines; air engines; CFD analysis

Summary:

The extensive usage of conventional energy resources and the lack of universal access to modern sources of energy is one of major constraints to Environmental deterioration. Using Stirling technology is one of the radical solutions for these issues. In this thesis, the thermal-lag engine (TLE) is analyzed to have a comprehensive perception for this engine and its own cycle by creating a three-dimensional (3D) model and solve the equations of continuity, energy and momentum as well as turbulence equations by using CFD technology. Moreover, pressure and temperature distributions are illustrated and many other effects like dwell time, thermal lag and gas swirling effects are captured and discussed. Finally, a proposed TLE and a modified ideal cycle have been suggested for better engine performance and more power output.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

All praise belongs to Allah Almighty for his uncountable grace, blessings and generousness throughout all my life.

At the end of this long journey, many people come to my mind who helped me to complete my master studies and present this work. Firstly, I hereby would like to express my deep appreciation and gratefulness to all my outstanding professors, Prof. Dr. Karam Ramzy Beshay, Prof. Dr. Essam E. Khalil and Dr. Carlos Fernandez for their support and distinctive supervision throughout my graduate study. I am grateful to all of them and appreciate their efforts and guidance.

I really do owe to Dr. Carlos Fernandez who always encourage and support me and open my mind to various points of research. He is a smart and patient man. He helped me a lot to understand the physics of the "Thermal-lag engines" and finish my thesis.

Finally, I would like to thank all my family for their faith in me and their support. I could not go one step closer to achieve my goal without their encourage and du'a.

Thank you all.

Muhamad Eldebawy

Table of Contents

Disclaimer	i
Acknowledgment	ii
List of Tables	v
List of Figures	vi
List of Symbols and Abbreviations	viii
Abstract	x
Chapter 1 : Introduction	1
1.1. Outset	1
1.2. Stirling technology contributions	3
1.3. Motivation and layout of present thesis	4
Chapter 2 : Literature Review	5
2.1. Outset	5
2.2. Stirling engines, past and future	5
2.3. Rebirth of Stirling engines	9
2.4. Stirling engine main components	9
2.5. Thermodynamics of Stirling cycle	11
2.6. Mechanical Arrangements of Stirling engines	14
2.7. Technology advances	16
2.8. TLE development contributions	18
2.9. Thermal-lag engine test rig	20
Chapter 3 : CFD Model of Thermal-Lag Engine	27
3.1. Outset	27
3.2. Simulation environment	27
3.3. Computer-aid design of experimental TLE	29
3.4. Model assumptions	32
3.5. Volume calculations	32
3.6. Mass calculations	35
3.7. Geometry simplification	36
3.7.1. Hot section equivalent geometry	36

3.7.2. Heat transfer coefficients (HTC)	38
3.8. CFD model of TLE	39
3.9. Meshing function	40
3.10. Grid sensitivity	42
3.10.1. Mesh quality	42
3.10.2. Grid independence test	45
3.11. Numerical models and equations	47
3.12. Boundary and initial conditions	52
3.13. Calculation run	54
Chapter 4 : Presentation of the Results	55
4.1. Model validation	55
4.2. Thermodynamic behaviour of TLE	62
4.2.1. Pressure and temperature distributions	63
4.2.2. Thermal-lag and dwell time effects	70
4.2.3. Gas swirling effect	74
Chapter 5 : Proposed Thermal-lag Engine	78
5.1. Proposed engine design	79
5.2. Parametric analysis	80
Chapter 6 : Conclusions and Recommendations	89
6.1. Conclusions	89
6.2. Recommendations for future work	90
References	91

List of Tables

Table 3.1: Reported Parameterization of Experimental TLE	29
Table 3.2: Mesh parameterization	41
Table 3.3: Boundary conditions	
Table 3.4: Initial conditions	
Table 4.1: CFD model parameters	55
Table 4.2: Heat transfer coefficients	
Table 4.3: Work and power output for model and experiment	59
Table 5.1: Proposed engine parameters	