

AN INNOVATIVE TECHNOLOGY FOR PRODUCING ECO-FRIENDLY GEO-POLYMER COMPRESSED EARTH BLOCKS

By

Nouran Mohammed Abdelfatah Mohammed Eloani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

AN INNOVATIVE TECHNOLOGY FOR PRODUCING ECO-FRIENDLY GEO-POLYMER COMPRESSED EARTH BLOCKS

By

Nouran Mohammed Abdelfatah Mohammed Eloani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Structural Engineering

Under the Supervision of

Prof. Dr. Mohamed Ismail Serag Dr. Muhammad Samy El-Feky

Professor of Strength of Materials Structural Engineering Department Faculty of Engineering, Cairo University

.....

Researcher
Civil Engineering Department
National Research Centre

.....

AN INNOVATIVE TECHNOLOGY FOR PRODUCING ECO-FRIENDLY GEO-POLYMER COMPRESSED EARTH BLOCKS

By Nouran Mohammed Abdelfatah Mohammed Eloani

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Ismail Abdel Aziz Serag (Thesis Main Advisor)

Prof. Dr. Mohamed Mohsen El-Attar (Internal Examiner)

Prof. Dr. Mohamed Osama Ramadan

(External Examiner)

- Professor of Strength of Materials
 - Faculty of Engineering, Banha University

Engineer's Name: Nouran Mohammed Abdelfatah Mohammed

Date of Birth: 12/04/1982 **Nationality:** Egyptian

E-mail: mekkawyessam@yahoo.com

Phone: 002-0114-760-0034

Address: No. 93a, Toman Bay St., Al Zaytoon, Cairo

Registration Date:01/3/2015Awarding Date:..../2018Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Mohamed Ismail Abdel Aziz Serag Dr. Muhammad Samy Abdul Hakeem El-Feky

Civil Engineering Department National Research Centre

Examiners:

Prof. Dr. Mohamed Osama Ramdan (External Examiner)

Professor of Strength of Materials

Faculty of Engineering, Banha University

Prof. Dr. Mohamed Mohsen El-Attar (Internal Examiner)
Porf. Dr. Mohamed Ismail Serag (Thesis Main Advisor)

Title of Thesis:

An Innovative Technology for Producing Eco-Friendly Geo-polymer compressed Earth Blocks

Key Words:

Compressed Earth Blocks; Vibrated (CEBs); Slag; CKD; Geo-polymer Earth Blocks.

Summary:

The thesis represents an experimental program designed to study the possibility of replacing cement as a stabilizer in earth blocks by industrial by- product such as slag or thermally treated cement kiln dust in different temperature degrees. The effect of using different curing regimes on the performance of earth blocks, the effect of different ways of compaction, activator modulus (Ms) and water to binder ratio on the strength of compressed, vibrated earth blocks. Using slag, thermally treated CKD with alkali activators geo-polymer earth bricks was produced with properties complying with the Egyptian Standard Specifications (ESS).

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

My Dad, Mum & My Husband, My family that has a great effect on my life,

> All my love to you To Dr Mohamed Serag

Who has a great effect on my life

Acknowledgments

First of all, thanks to **GOD** for giving me the effort to complete this work. Thanks a lot for my eminent professors who led me a lot for getting this work.

Words will never express my gratitude for him, I was fortune enough to be under supervision and to work with.

Dr. Mohamed I. Serag, Assistant Professor of Strength of Materials, Faculty of Engineering, Cairo University. I would like to thank him for continuous care, support, revision and supervision. His continuous remarks were one of the secrets of success of the work.

Words will never express my gratitude for **Dr. Muhammad S. ElFeky**, Researcher in Civil Engineering Department, National Research Centre, I would like to thank him for supervision.

Table of Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
TABLE OF CONTENTS	IV
List of Table	VII
List of Figures	VIII
ABSTRACT	
CHAPTER 1: INTRODUCTION	
1.1. General	1
1.2. Objectives	2
1.3. Scope of Work	
1.4. Thesis Layout	
•	
1.4.1. Chapter 1: Introduction	
1.4.2. Chapter 2: Background & Literature Review	
1.4.3. Chapter 3: Experimental Work	
1.4.4. Chapter 4: Results and Discussion	
1.4.5. Chapter 5: Summary, Conclusions and Recommendations	
CHAPTER 2: BACKGROUND & LITERATURE REVIEW	
2.1. Background.	
2.1.1. Historical Back Ground of Earth Construction	
2.1.2. Old Techniques Used in Earth Construction	
2.1.2.1. Rammed Earth Construction	
2.1.2.2. Cob Construction Technique	
2.1.2.3. Wattle and Daub.	
2.1.3. Historical Back Ground of Compressed Earth Blocks	
2.1.4. Development of Technology of Compressed Earth Blocks	10
2.1.5. Future of Compressed Earth Blocks	10
2.1.6. Soil as a Building Material	11
2.1.6.1. Soil Defination.	11
2.1.6.2. Soil Problems	
2.1.6.3. Ways to Overcome the Clayey Soil Problems	
2.1.6.3.1. Soil Modification	
2.1.6.3.2 Soil Stabilization.	12

2.1.6.3.3. Types of Ordinary Stabilizers	1
2.1.6.3.3.1. Lime	
2.1.6.3.3.2. Cement	
2.2. Why Do We Have to Use Geopolymers	
2.3. Examples of Geo-Polymer Materials	1
2.3.1. Granulated Blast Furnace Slag as a Building Material	10
2.3.2. Cement Kiln Dust as a Building Material	
2.4.1. Engineering of Law Cost Bricks	18
CHAPTER 3: EXPERIMENTAL PROGRAM	3
3.1. Introduction	32
3.2. Experimental Program	32
3.2.1. Overview of Experimental Program	32
3.2.2. Characterization of Used Materials	35
3.2.2.1. Slag	35
3.2.2.2. Kaolinite	3
3.2.2.3. Thermally Activated Kaolinite	3′
3.2.2.4. Red Sand	3
3.2.2.5. Cement Kiln Dust (CKD)	4
3.2.2.6. Sodium Hydroxide (NaOH)	42
3.2.2.7. Sodium Silicate (Na ₂ Sio ₃)	43
3.2.2.8. Water	43
3.2.3. Samples Preparation	4
3.2.3.1. Mixture Constituents	44
3.2.3.2. Mixing Procedure	4
3.2.3.3. Casting and Curing	
3.2.3.4. Testing	50
CHAPTER 4: RESULTS AND DISCUSSION	
4.1. Introduction	5′
4.2. The Effect of Slag Content	58
4.3. The Effect of Mechanical Stabilization	60
4.4. The Effect of Age on Compressive Strength	6

4.6. The Effect of Water/ Na ₂₀ Ratio on the Properties of Geo-polymer Earth Blocks
4.7. The Effect of Adding Lime to Slag on the Properties of Geo-polymer Earth Blocks
4.8. The Effect of Curing Regimes
4.9. The Effect of Kaolinite to Sand Ratio71
4.10. The Effect of Adding Activated CKD and Activated Kaolinite or Compressive Strength
4.11. Durability
4.12. Compressive Strength Versus ESS
4.13. Physical Properties
4.14. Proposed Mixes and Production Technology
4.15. Chemical Analysis of CEB of Mix 17 89
CHAPTER 5: SUMMARY, CONCLUSION & RECOMMENDATION 90
5.1. Summary
5.2. Conclusions
5.3. Recommendations
REFERENCES93
APPENDIX A: 197
APPENDIX A: 2
APPENDIX B: 1
APPENDIX B: 2
APPENDIX B: 3 101
APPENDIX B: 4 102
APPENDIX C 103
APPENDIX D

List of Tables

Table 2.1: Composition of geo-polymer mixes [33]	5
Table 2.2: Mix proportion by varying stabilizer [34]	. 23
Table 2.3: Chemical composition of red mud [34]	23
Table 2.4: Water absorption results [34]	25
Table 3.1: Chemical composition of slag by XRF	34
Table 3.2: Dry sieve analysis of slag	35
Table 3.3: Chemical composition of kaolinite by XRF	. 36
Table 3.4: Chemical composition of activated kaolinite at 700°c and 800°c by XRF	37
Table 3.5: Dry sieve analysis of activated kaolinite at 700°c and 800°c by XRF	38
Table 3.6: Chemical composition of red sand by XRF	39
Table 3.7: Chemical composition of CKD and thermally treated CKD by XRF	41
Table 3.8: Dry sieve analysis of CKD and thermally treated CKD by XRF	42
Table 3.9: Chemical composition of sodium hydroxide by XRF	. 42
Table 3.10: Chemical composition on sodium silicate by XRF	43
Table 3.11: Chemical composition on water by XRF	43
Table 3.12a: Mixtures design	44
Table 3.12b: Mixtures design	45
Table 3.13: Alkali activated solution PH and temperature	46
Table 4.1: The effect of percentage of adding lime and its type on the compres	sive
strength of earth blocks at different ages	. 69
Table 4.2: Stability state of the specimens after immersion in tap water and	
water	80
Table 4.3: Physical properties of all tested mixes and ESS 1524-1993 requirements	
Table 4.4: Chemical analysis of a tested brick from mix 17	89

List of Figures

Figure 2.1: The great pyramids and the sphinx in Egypt	5
Figure 2.2: Old rammed earth construction	6
Figure 2.3: Rammed earth construction technique	6
Figure 2.4: Cob construction technique	7
Figure 2.5: Cob plastering	8
Figure 2.6: Wattle and daub construction technique	8
Figure 2.7: The Ramasseum in Egypt	9
Figure 2.8: Shapes of buildings built by compressed earth blocks	1
Figure 2.9: Past, current and future estimation of the amount of the world ce	ment
production [21]	14
Figure 2.10: Flow chart of iron and steel manufacturing processes [29]	16
Figure 2.11: Dust control device [31]	17
Figure 2.12: Compressive strength of alkali activated MK bricks specimens different sand ratios with 40% slag [33]	_
Figure 2.13: Water absorption of geo-polymer bricks specimens using different	
ratios with 40% slag [33]	
Figure 2.14: Compressive strength of alkali activated CKD and water cooled slag b	
Figure 2.15: Water absorption of alkali activated CKD and water cooled slag b	ricks
[33]	
Figure 2.17: Wet compressive strength with cement and lime [35]	
Figure 2.18: Influence of clay content on compressive strength [38]	
Figure 2.19: Influence of cement content on compressive strength [38]	
Figure 2.20: Influence of CKD content on compressive strength [39]	
Figure 3.1: Slag after grinding and sieving	
Figure 3.2: Kaolinite quarry at Al Shokhna in Egypt	
Figure 3.3: Kaolinite after grinding and sieving	
Figure 3.4: Red sand after and sieving	
Figure 3.5: Grading red sand	
Figure 3.6: Cement kiln dust	
Figure 3.7: Shrinkage cracks of mix 3	
Figure 3.8: The mixer	
Figure 3.9a: Steel moulds without cover	49
Figure 3.9b: Steel moulds with cover	
Figure 3.10: Compressing process	50
Figure 3.11: Blocks after compressing process	
Figure 3.12: Moulds used to prepare vibrating earth blocks	
Figure 3.13: The vibrator	
Figure 3.14: Wooden mould used to prepare the cubic specimens (50*50*50) mm	
Figure 3.15: Oven used for curing the specimens	
Figure 3.16: The glass green house	

Figure 3.17: Earth blocks after demoulding	
Figure 3.18: Cubes (50*50*50) mm	
Figure 3.19: Cubes after immersion in sea water for 90 days 55	
Figure 3.20: Tenius Olsen Universal Testing Machine	
Figure 4.1: Relationship between the slag content and 7 days compressive strength 58	
Figure 4.2: Relationship between the slag content and 28 days compressive strength 58	
Figure 4.3: Relationship between the slag content and 90 days compressive strength. 59	
Figure 4.4: Relationship between age and compressive strength (10% slag content). 60	
Figure 4.5: Relationship between age and compressive strength (15% slag content). 61	
Figure 4.6: Relationship between age and compressive strength (20% slag content). 61	
Figure 4.7: Relationship between MS and compressive strength (10% slag content) at 7	
days	
Figure 4.8: Relationship between MS and compressive strength (10% slag content) at	
28 days	
Figure 4.9: Relationship between MS and compressive strength (10% slag content) at	
90 days	
Figure 4.10: Relationship between MS and compressive strength (15% slag content) at	
7 days	
Figure 4.11: Relationship between MS and compressive strength (15% slag content) at	
28 days	
Figure 4.12: Relationship between MS and compressive strength (15% slag content) at	
90 days	
Figure 4.13: Relationship between water/Na ₂ o and compressive strength at 7 days 67	
Figure 4.14: Relationship between water/Na ₂ o and compressive strength at 28 days. 67	
Figure 4.15: Relationship between water/Na ₂ o and compressive strength at 90 days. 68	
Figure 4.16: The influence of curing regime on 28 days earth blocks compressive	
strength for different types of blocks	
Figure 4.17: Effect of kaolinite to sand ratio on compressive strength for different types	
of blocks at 7 days71	
Figure 4.18: Effect of kaolinite to sand ratio on compressive strength for CEB for	
different curing types at 28 days	
Figure 4.19: Effect of kaolinite to sand ratio on compressive strength for VEB for	
different curing types at 28 days	
Figure 4.20: Effect of kaolinite to sand ratio on compressive strength for cubes for	
different curing types at 28 days	
Figure 4.21: Effect of kaolinite to sand ratio on compressive strength for different types	
of blocks at 90 days73	
Figure 4.22: Effect of using activated CKD and activated kaolinite on compressive	
strength for CEB blocks at 7 days	
Figure 4.23: Effect of using activated CKD and activated kaolinite on compressive	
strength for VEB blocks at 7 days	
Figure 4.24: Effect of using activated CKD and activated kaolinite on compressive	
strength for CEB blocks at 28 days75	

Figure 4.25: Effect of using activated CKD and activated kaolinite on compressive
strength for VEB blocks at 28 days76
Figure 4.26: Effect of using activated CKD and activated kaolinite on compressive
strength for CEB blocks at 90 days
Figure 4.27: Effect of using activated CKD and activated kaolinite on compressive strength for CEB blocks at 90 days
Figure 4.28a: Relationship between the compressive strength at 90 days specimens
cured at ambient temperature and immersed in sea water
Figure 4.28b: Relationship between the compressive strength at 90 days specimens cured at ambient temperature and immersed in sea water
Figure 4.29a: Compressive strength at 28 days CEB compared to Egyptian Standard Specifications
Figure 4.29b: Compressive strength at 28 days VEB compared to Egyptian Standard Specifications
Figure 4.30a: Compressive strength at 90 days CEB compared to Egyptian Standard Specifications
Figure 4.30b: Compressive strength at 90 days VEB compared to Egyptian Standard Specifications

Abstract

The need for eco-friendly building materials for sustainable development is now a major environmental issue in the construction industry. Compressed earth blocks are an old heritage needs to development to fit the development of construction field and to be compatible with the new standard specification of building bricks. Over the last decades the researchers tried to use the eco-friendly bricks because of its compatibility with the environment and its low costing compared with the ordinary burnt bricks. Those trials depended on using cement as the main stabilizer material with lime and trials to use cement kiln dust (CKD) as a partial substitution of cement with different percentages. In this thesis the steel slag was used as a main geo-polymer component to produce geopolymer earth blocks. An extensive research works carried out in Cairo University under the supervision of Prof Dr. Mohamed Serag, two Pending Patents [No 106/2018] and [No 640/2018] Introduced to the Academy of Scientific Research and Technology (Patent Office), the first concerning activating the CKD through thermal treatment to enhance its cementitious properties while the second concerning the production of geopolymer earth blocks using industrial by-products. These bricks reduce the consumption of gas and fuel which are necessary for burning the silt bricks and the high price of cement which is necessary for producing cement bricks and burnt clay bricks.

Key Words:

Compressed Earth Blocks; (CEBs); Vibrated; Slag A; Water Cooled Steel Slag; CKD; Thermally Activated CKD; Geo-polymer Earth Blocks.