

A NOVEL APPROACH FOR REMOTE DIAGNOSIS AND TROUBLESHOOTING FOR LAB INSTRUMENTS

By

Ashraf Nader Mohi Eldeen Rizk

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Biomedical Engineering and Systems

A NOVEL APPROACH FOR REMOTE DIAGNOSIS AND TROUBLESHOOTING FOR LAB INSTRUMENTS

By Ashraf Nader Mohi Eldeen Rizk

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Biomedical Engineering and Systems

Under the Supervision of

Prof. Dr.

Ayman M. Eldeib

Professor Doctor Systems and Biomedical Engineering Faculty of Engineering, Cairo University

A NOVEL APPROACH FOR REMOTE DIAGNOSIS AND TROUBLESHOOTING FOR LAB INSTRUMENTS

By Ashraf Nader Mohi Eldeen Rizk

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Approved by the Examining Committee	
Prof. Dr. Ayman M. Eldeib	— (Thesis Main Advisor)
Prof. Dr. Ahmad M. Rajab All	bialy (Internal Examiner)
Dr. Walid Ibrahim Al-Atabany	

Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Ashraf Nader Mohi Eldeen Rizk

Date of Birth: 17/09/1975 **Nationality:** Egyptian

E-mail: asnamori@yahoo.com

Phone: 0100 2975 061

Address: 905, 20 St. 5th Neighborhood, 5th District,

6 of October City, P.O.Box 12451, Giza

Registration Date: 01/03/2011 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Prof. Dr. Ayman M. Eldeib

Examiners:

Prof. Dr. Ayman M. Eldeib (Thesis main advisor)
Prof. Dr. Ahmad M. Rajab Albialy (Internal examiner)
Dr. Walid Ibrahim Al-Atabany (External examiner)
- Associate professor in Biomedical Engineering Dept.,

Helwan University

Title of Thesis:

A NOVEL APPROACH FOR REMOTE DIAGNOSIS AND ROUBLESHOOTING FOR LAB INSTRUMENTS

Key Words:

Critical care instruments; direct access remote diagnosis; laboratory equipment; remote diagnosis; troubleshooting

Summary:

The use of remote diagnosis and troubleshooting are widely used nowadays to improve instruments' uptime and minimize workflow interruption. However, such feature is not used in many critical care units or laboratories (labs) either due to limited features offered by manufacturers or high cost of the interface S/W especially in developing countries. The negative impact is more obvious in aged or discontinued machines lacking remote communication ports despite owning an embedded diagnosis or troubleshooting S/W. This research describes a direct access remote diagnosis and troubleshooting for the input and output devices of a critical care/lab instrument using a flat data cable, a 5.5cm x 10cm Arduino Due ready-made board, and a control S/W. The main advantage of this approach is its low cost, compact design and simple implementation besides being convenient and suitable for other instruments possessing in/out devices with the same specifications.

Disclaimer

I hereby declare that this is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ashraf Nader Mohi Eldeen Rizk Date: 25th of February, 2019

Signature:

Dedication

This thesis is dedicated to my father, mother, beloved wife and daughters, models for intellectual curiosity, diligence, artistry, and compassion in my life.

Acknowledgments

The author would like to present his thanks to the following engineers: Yasser Kenawy, Osama Riyad, Ayman Anwar, and Mohamed Belal for their assistance and support.

Table of Contents

LIST OF	TABLES	VI
LIST OF	FIGURES	VII
NOMEN	CLATURE	IX
ABSTRA	CT	X
СНАРТЕ	R 1: INTRODUCTION	1
1.1.	Introduction	1
1.2.	ADDRESSED PROBLEM	1
1.2.1.	Local market survey	2
1.3.	PROPOSED SOLUTION	2
1.3.1.	Traditional vs. Direct remote access	3
1.3.2.	Advantages	
1.3.2		
1.3.2		
1.3.2	r r r r r r r r r r r r r r r r r r r	
1.3.2 1.3.2	· · · · · · · · · · · · · · · · · · ·	
1.3.2	ORGANIZATION OF THE THESIS	
1.4.	ORGANIZATION OF THE THESIS	J
CHAPTE	R 2 : LITERATURE REVIEW	6
2.1.	Introduction	6
2.2.	CHOSEN EQUIPMENT	
2.2.1.	Operating principles	
2.2.1.		
	Understanding the reference sensor.	
2.2.1		
2.2.1	r	
	Hydogen ion activity or pH	
	pH sensor	
	pCO ₂ sensor	
	Oxygen tension (pO ₂).	
	pO ₂ sensor	
2.2.2.	Clinical significance	15
2.2.2	1	
2.2.2	<u>r</u>	
2.2.2	1 - 2	
2.2.3.	User interface	16
CHAPTE	R 3: MATERIALS AND METHODS	18
3.1.	Introduction	18
3.2.	USED MATERIALS	18
3.3.	IMPLEMENTATION STEPS	
3.3.1.	Analyzer modifications	
3.3.1.	Keypad control signals and display data acquisition	

3.3.3	3. Interface PCB components and design	∠1
3.3	.3.3.1. PCB electronic components	
	CD74HCT4514 decoder	
	TLP521GB phototransistors	
	3.3.2. PCB design and architecture	
3.3.4	F &	
3.3.5	5. Control software	26
3.4.	TESTING DEVICES USED	30
3.5.	Use of Arduino kits	34
СНАРТ	TER 4: RESULTS AND DISCUSSION	37
4.1.	Introduction	37
4.1. 4.2.	IntroductionRESULTS	
		37
4.2. 4.3.	RESULTS	37
4.2. 4.3.	RESULTS DISCUSSION	
4.2. 4.3. CHAPT	RESULTS DISCUSSION TER 5 : CONCLUSIONS AND FUTURE WORK	
4.2. 4.3. CHAPT 5.1. 5.2.	RESULTS DISCUSSION FER 5 : CONCLUSIONS AND FUTURE WORK CONCLUSIONS	

List of Tables

Table 1.1: Traditional vs. Direct remote access	3
Table 3.1: Decode function truth table ($\overline{LE} = H$)	24

List of Figures

Figure 1.1: Statistical data for shares of BGAs brands	2
Figure 2.1: RL248 pH/Blood gas analyzer manufactured by Siemens (front view)	6
Figure 2.2: RL248 pH/Blood gas analyzer manufactured by Siemens (back view)	6
Figure 2.3: Potentiometric cell	8
Figure 2.4: Ion-selective electrode and reference electrode	9
Figure 2.5: Reference sensor	
Figure 2.6: Amperometric cell	11
Figure 2.7: pH sensor	
Figure 2.8: pCO ₂ sensor	13
Figure 2.9: pO ₂ sensor	
Figure 2.10: RL248 pH/Blood gas analyzer VFD (front view)	
Figure 2.11: RL248 pH/Blood gas analyzer VFD (back view)	
Figure 2.12: RL248 pH/Blood gas analyzer MK	
Figure 3.1: Schematic diagram showing four main used components	
Figure 3.2: Schematic diagram showing five stages and hardware components requ	
to implement the DARDT technique	
Figure 3.3: BGA internal control board with two rows 28 pins male socket	
Figure 3.4: BGA back cover with generated slot	
Figure 3.5: Photo of the Control/Data (C/D) flat cable showing relevant connectivi	•
Figure 3.6: Photo showing interface PCB size compared to a VISA card	
Figure 3.7: 4-to-16 line decoder (Texas Instruments model CD74HCT4514)	
Figure 3.8: Phototransistor (ISOCOM Components model TLP521GB)	
Figure 3.9: VFD and 40 pins male socket pin configuration	
Figure 3.10: Interface PCB circuit schematic diagram	
Figure 3.11: Top silkscreen showing components position	
Figure 3.12: Top & bottom solder masks showing pass thru vias	
Figure 3.13: Top copper layer (component side) with board outline	
Figure 3.14: Bottom copper layer (solder side) with board outline	
Figure 3.15: BGA back cover with interface PCB (circled) assembled in the slot	
Figure 3.16: VFD data Write and data Read command	
Figure 3.17: VFD Write command sequence	
Figure 3.18: VFD Timing Chart (write operation)	
Figure 3.19: Agilent logic analyzer (model E9340A - ver. 1.21)	
Figure 3.20: Tektronix logic analyzer (model TLA5201B - ver. 5.6)	
Figure 3.21: Agilent logic analyzer probe connector (left) as it connects to the gene	
purpose lead set (right)	
Figure 3.22: Screen shot for Agilent logic analyzer measurement screen	
Figure 3.23: VFD ASCII table for symbols & characters	
Figure 3.24: Screen shot for Agilent logic analyzer exported data	
Figure 3.25: The Analog Discovery 2 minout diagram	
Figure 3.26: The Analog Discovery 2 pinout diagram	
Figure 3.27: Screen shot for Analog Discovery 2 as a 1 MHz counter	
Figure 3.28: Screen shot for Analog Discovery 2 as an oscilloscope	
Figure 3.30: Arduino Due Rev.3.0	
1 1guic 3.30. Ailuullo Duc Nov.3.0	,JJ

Figure 4.1: RL248 pH/BG analyzer Operating Menu (from 1 to 8)	38
Figure 4.2: RL248 pH/BG analyzer Not Ready Calibration required screen	39
Figure 4.3: Screen shot for plotted captured data for same displayed screen	39
Figure 4.4: RL248 pH/BG analyzer Main Menu screen	39
Figure 4.5: Screen shot for plotted captured data for same displayed screen	
Figure 4.6: RL248 pH/BG analyzer Calibration screen	39
Figure 4.7: Screen shot for plotted captured data for same displayed screen	39
Figure 4.8: RL248 pH/BG analyzer Barometer screen	
Figure 4.9: Screen shot for plotted captured data for same displayed screen	39
Figure 4.10: RL248 pH/BG analyzer Full 2 Point screen	40
Figure 4.11: Screen shot for plotted captured data for same displayed screen	40
Figure 4.12: RL248 pH/BG analyzer Full 2 Point - Failed screen	40
Figure 4.13: Screen shot for plotted captured data for same displayed screen	40
Figure 4.14: RL248 pH/BG analyzer Maintenance screen	40
Figure 4.15: Screen shot for plotted captured data for same displayed screen	40
Figure 4.16: RL248 pH/BG analyzer Deproteinize screen	40
Figure 4.17: Screen shot for plotted captured data for same displayed screen	40
Figure 4.18: RL248 pH/BG analyzer Troubleshooting screen	41
Figure 4.19: Screen shot for plotted captured data for same displayed screen	
Figure 4.20: RL248 pH/BG analyzer Heater screen	41
Figure 4.21: Screen shot for plotted captured data for same displayed screen	41
Figure 4.22: RL248 pH/BG analyzer Data Recall screen	41
Figure 4.23: Screen shot for plotted captured data for same displayed screen	41
Figure 4.24: RL248 pH/BG analyzer View Results screen	41
Figure 4.25: Screen shot for plotted captured data for same displayed screen	41
Figure 4.26: RL248 pH/BG analyzer View Results 2 screen	42
Figure 4.27: Screen shot for plotted captured data for same displayed screen	
Figure 4.28: RL248 pH/BG analyzer Enter Patient Data screen	42
Figure 4.29: Screen shot for plotted captured data for same displayed screen	42
Figure 4.30: RL248 pH/BG analyzer Operating Setup screen	42
Figure 4.31: Screen shot for plotted captured data for same displayed screen	42
Figure 4.32: RL248 pH/BG analyzer Units screen	
Figure 4.33: Screen shot for plotted captured data for same displayed screen	
Figure 4.34: RL248 pH/BG analyzer System Setup screen	
Figure 4.35: Screen shot for plotted captured data for same displayed screen	
Figure 4.36: RL248 pH/BG analyzer Date and Time screen	
Figure 4.37: Screen shot for plotted captured data for same displayed screen	
Figure 4.38: RL248 pH/BG analyzer Service Setup screen	43
Figure 4.39: Screen shot for plotted captured data for same displayed screen	
Figure 4.40: RL248 pH/BG analyzer System Information screen	
Figure 4.41: Screen shot for plotted captured data for same displayed screen	
Figure 4.42: Snapshot for RL248 BGA DARDT interface for Main Menu screen	
Figure 4.43: Photo for RL248 BGA screen and membrane keypad	
Figure 4.44: Pop up window used for Windows remote connection	
Figure 4.45: VFD graphic display address map	46

Nomenclature

Alphabetically ordered abbreviations:

ASCII American Standard Code for Information Interchange

BGA Blood Gas Analyzer

C/D Control/Data

CASBEC Center of Advanced Software and Biomedical Engineering Consultations

CCU Critical Care Unit Commun. Communication

DARDT Direct Access Remote Diagnosis and Troubleshooting

DLL Dynamic Link Library
DMS Data Management System
DRA Direct Remote Access
ECP Enhanced Capabilities Port

Inst. Instruments
IP Internet Protocol

ISE Ion Selective Electrode

Lab Laboratory

LAN Local Area Network MK Membrane Keypad

PASA Purchasing and Supply Agency pCO₂ Carbon Dioxide Partial Pressure

pO₂ Oxygen Partial Pressure

RL248 Rapidlab[®] 248 pH/Blood gas analyzer

ROI Return On Investment

S/W Software

SPP Standard Parallel PortTRA Traditional Remote AccessVFD Vacuum Fluorescent Display

Abstract

The use of remote diagnosis and troubleshooting are widely used nowadays to improve instruments' uptime and minimize workflow interruption. However, such feature is not used in many critical care units or labs either due to limited features and accessibility offered by manufacturers or due to high cost for interface software especially in developing countries. The negative impact is more obvious in labs with aged or discontinued instruments lacking remote communication ports despite owning an embedded diagnosis or troubleshooting software. This research describes a direct access remote diagnosis and troubleshooting for the input and output devices of a critical care and laboratory instrument using a custom-made flat data cable, an 8 cm x 10 cm built-in PCB designed for this purpose, a standard parallel cable, and a control software, replaced by the more powerful ready-made Arduino Due board with even a smaller foot print of 5.5 cm x 10 cm and higher processing speed and features. The main advantage of this approach is its low cost, compact design and simple implementation besides being convenient and suitable for other instruments possessing input/output devices with the same specifications. Implementation of the control software and hardware related to accessing the machine's membrane keypad and display using a PC has been successfully accomplished and tested leading to the use of all PC communication capabilities including remote connection and access. By integrating all hardware components, the prototype system was capable of remotely diagnosing and controlling the machine on real-time basis.

Chapter 1: Introduction

This chapter provides an introduction for the applied principle of remote diagnosis and troubleshooting in industrial and healthcare fields describing its importance, it then addresses the concerned problem handled by this research and the proposed solution. A comparison with other traditionally available solution is presented with emphasis on strength points and merits of the proposed solution over traditional ones.

1.1. Introduction

The principle of remote diagnosis emerges to overcome high cost and difficulty of transportation to far territories, scarcity of service personnel at suppliers, also offering technical support at unreachable regions due to natural disasters, harsh weather conditions or at war time [1, 2].

Telemaintenance is used in the industrial field based on remote supervision and activation of given equipment in an industrial environment [3], benefiting from the technological evolution in the field of electronics and telecommunication. The medical field applies same principle to medical instruments: mainly life supporting categories, and 24hrs running systems. The use of remote diagnosis technique in the medical field greatly resolves problems related to frequent medical staff turnover and shifts, lack of experience and training, and aids in fast intervention without the need to physically access the remote location [3].

Nowadays many critical care and laboratory (lab) equipment manufacturers are offering remote diagnosis services for their products by the aid of built-in communication port(s) i.e. USB, serial (RS232), network, and others that can be connected to a PC. Using a special interface software protocol, the instrument and PC can communicate and interchange data. Remote diagnosis significantly shortens repair time, avoids downtime by taking advantage of predictive methods, and provides general diagnostic assistance [4]. However software packages are not often available or affordable for most instruments especially in developing countries. The situation is more drastic for aged or discontinued but still in service instruments with customers trying to maximize machine features and usage; such condition urges us to find a feasible, low cost, and compact design solution.

1.2. Addressed problem

Although the use of remote diagnosis and troubleshooting are widely used nowadays to improve instruments' uptime and minimize workflow interruption. However, such feature is not used in many Critical Care Units (CCU) or labs; either due to: 1) limited features and access offered by manufacturers of such equipment or because of 2) high cost for interface software packages; especially in developing countries. The negative impact is more obvious in labs with aged or discontinued instruments lacking remote communication ports but having an embedded diagnosis and/or troubleshooting software.