

Cairo University Faculty of Veterinary Medicine Department of Micropiolgy

Molecular Recognition of *Brucella* Based on Matrix-assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry and Molecular Imprinted Polymers

A thesis submitted by

Abdoulrazak Omar Ali

(B.V.Sc., Thamar University, Yemen, 2014)

For the degree of the Master (Bacteriology, Immunology & Mycology)

Under supervision of

Prof. Dr. Wagih A. Gad El-Said

Professor Emeritus of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Mahmoud D. Elhariri Dr. Ashraf E. M. Sayour

Assist. Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University Senior Researcher of *Brucella*, Animal Health Research Institute, Agricultural Research Center Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Approval sheet

This is to certify that the dissertation submitted by Abdoulrazak Omar Ali to Cairo University, for the Master Degree in Veterinary Medical Sciences, Microbiology (Bacteriology, Immunology, Mycology) has been approved by the Examining Committee.

Members of the Committee

Prof. Dr. Mohamed Elsayed Anany

Professor of Microbiology Faculty of Veterinary Medicine Suez University

Prof. Dr. Khaled Elamry

Professor of Microbiology
Dean of Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Wagih Gad Elsaid

Professor of Microbiology Faculty of Veterinary Medicine Cairo University Supervisor

Dr. Mahmoud Dardiri Elhariri

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University Supervisor

Prof. Dr. Ashraf Sayour

Chief Researcher
Animal Health Research Institute

Supervisor

Date:

Cairo University Faculty of Veterinary Medicine

SUPERVISION SHEET

Prof. Dr. Wagih A. Gad El-Said

Professor Emeritus of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Mahmoud D. Elhariri

Assist. Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Dr. Ashraf E. M. Sayour

Senior Researcher of Brucella, Animal Health Research Institute, Agricultural Research Center

Cairo University Faculty of Veterinary Medicine

Name: Abdoulrazak Omar Ali

Nationality: Djiboutian

Degree: M.V.Sc. (Microbiology)

Specialization: Bacteriology, Immunology and Mycology

Title of thesis: "Molecular recognition of *Brucella* based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry and molecular

imprinted polymers"

Supervisors:

Prof. Dr. Wagih A. Gad El-Said

Professor Emeritus of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Mahmoud D. Elhariri

Assist. Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Dr. Ashraf E. M. Sayour

Senior Researcher of Brucella, Animal Health Research Institute, Agricultural Research Center

ABSTRACT

Brucella is an expanding genus of Gram-negative intracellular wide host This work aimed at investigating molecular recognition of ranging pathogens. Brucella by MALDI-TOF MS proteomic fingerprinting as well as novel plastic antibodies by developing and characterizing molecularly-imprinted hydrogels to grasp all surface epitopes at one go for whole cell recognition of Brucella abortus, B. melitensis and B. suis known to exist among livestock in Egypt. An MSP library of 11 reference Brucella strains was created. A dendrogram for reference strains was plotted to analyze phyloproteomic relations. Based on bacteriologic and proteomic biotyping of 45 field isolates, a map revealed the geographic distribution of Brucella melitensis and B. abortus from 69 unvaccinated seropositive ruminants in 12 governorates during 2015. The MALDI-TOF MS was re-evaluated as a revolutionary molecular tool for Brucella identification reviewing the pros and cons of the technique suggesting recent methods to tackle existing hitches. Effective bacterial recognition using a cell-imprinted polymer (CIP) formed on a 96-well microplate was achieved within 30 minutes. The polymer could discriminate the target strain from other strains with high selectivity reaching approximately 20 folds. It was concluded that bacteriologic and MALDI results fully matched thanks to the limited diversity of Brucella isolates and the narrow MSP library. The CIP approach proved valuable for rapid direct Brucella recognition and quantification colorimetrically in microtiter plates after full validation.

Key words: *Brucella*, MIPS, hydrogel, electron microscopy MALDI-TOF MS, phyloproteomic dendrogram, MSP.

<u>Dedication</u>

To my precious mother

To my dear brother Dayib

To my dear sister Halima and my brother Hadi

God bless you all and give you good health and happiness.

<u>Acknowledgements</u>

All thanks to our merciful god ALLAH: who gave me patience in all these years of work and gave me the opportunity, ability to finish this work.

Foremost, I would like to express my sincere gratitude to my advisor and supervisor **Prof. Dr. Wagih A. Gad El-Said**, Professor Emeritus of Microbiology Faculty of Veterinary Medicine Cairo University, for the continuous support in my study and research, for his patience, motivation, enthusiasm and immense knowledge.

My thanks also to **Dr. Mahmoud D. Elhariri**, Assist. Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his support, advice and providing helping facilities for my study.

My deepest gratitude and honor to my external supervisor. **Dr. Ashraf E,**Sayour, Senior Microbiologist, Department of Brucellosis Research, Animal Health
Research Institute, Dokki, Egypt, for his academic guidance, supervision,
encouragement and inspiration. I'm also grateful for his support by providing me
the reference strains of Brucella, and helping me in the writing of this thesis. I
could not have imagined having a better brother and mentor for my research.

I'm thankful as well to **Dr. Hosam E. Sayour**, Senior Bioanalytical Chemist, Department of Chemistry, Animal Health Research Institute, Dokki, for his vast chemical expertise and help in the development and characterization of molecularly imprinted polymers.

I'm thankful to my dear **Hadi** for their generous financial support during the years of my study.

Finally I'm heartedly thankful to the former Ambassador of the Republic of Djibouti in Egypt, Mr. Moussa Ahmed, for enormous helping in my master degree.

I'm thankful to **Eng Magdy Ghoneim** for incredible helpful about the weighting of the thesis.

LIST OF CONTENTS

	Title	Page	No
1.	INTRODUCTION	•••	1
2.	REVIEW OF LITERATURE	•••	4
3.1.	PUBLISHED PAPER	•••	31
3.2.	UNDER PUBLICATION PAPER		56
4.	DISCUSSION	· • • •	82
5.	CONCLUSION AND RECOMMENDATIONS		89
6.	SUMMARY	•••	90
7.	REFERENCES		92

LIST OF TABLES

Table No.	Table caption	Page No.
	Tables published paper	
1	Bacterial reference strains	34
2	Brucella phages for genus/ species identification of isolated brucellae	35
3	Bacteriologic genus Brucella recognition of the 45 isolates from ruminants in 12 governorates	39
4	Species identification of the 45 Brucella field isolates recovered from ruminants in 12 governorates	40
5	Biovar identification of the 45 Brucella field isolates recovered from ruminants in 12 governorates	41
6	Origin and phenotypic/ MALDI recognition of Brucella field strains in 2015	42
7	Summarized pros and cons of Brucella MALDI-TOF MS biotyping	48
	Tables under publication paper	
1	Reference bacterial strains	58
2	Preparation of McFarland turbidity standards	59
3	Uptake (%) of reference bacterial cells by non-imprinted (NIPs) and cell-imprinted polymers (CIPs)	71
4	Cross reactivity of cell-imprinted polymers (CIPs) between bacterial cell suspensions and their homologous and heterogeneous CIPs	72

LIST OF FIGURES

Figure	Figure caption	
No.		
	Figures published paper	
1	Mass spectral projections (MSP) dendrogram of 11	
1	reference Brucella strains	38
2	Geographic distribution of <i>Brucella</i> isolates in the cities	
2	of 12 governorates during 2015	43
3	The concept of MALDI-TOF MS molecular recognition	
3	of Brucella	45
	Figures Under published paper	
1	Calibration of McFarland standards' turbidimetric	
1	readings at 630 nm	63
2 (A-E)	Calibration curves of turbidity versus number of	
2 (A-L)	reference unstained bacterial suspensions	64-65
3	Rose-Bengal dye calibration curve	66
4 (A-E)	Absorbance and number of reference stained and	
7 (11-L)	washed bacterial suspensions	67-68

LIST OF PHOTO

Photo No.	Photo caption	Page No.
	Photo Under published paper	
1	Scanning electron microscopy of B. abortus strain 99 cells magnified 4050 X	69
2	Scanning electron microscopy of B. melitensis 16M cells entrapped in the polymeric hydrogel matrix magnified 7500 X	70

LIST OF ABBREVIATIONS

BC	Buffalo cow
BK2	Berkley
BPAT	Buffered plate agglutination test
BSC	Biological safety cabinets
BT	Bitch
BTS	Bacterial Test Standard
С	Cow
CCI	composite correlation index
CIP	Cell-imprinted polymer
CO ₂	Carbone dioxide
DNA	Deoxyribonucleic acid
DRS	dielectric relaxation spectroscopy
E	Ewe
ELISA	Enzyme-linked immunosorbent assay
FAC	Fetal abomasal contents
FAO	Food and Agriculture Organization
FB	Febrile blood
FI	Firenze
FPSR	False-positive serological reactions
FTIR	Fourier-transform infrared spectroscopy
FG	Female goat
HCCA	Alpha-cyano-4hydroxy cinnamic acid
HPLC	High-performance liquid chromatography
ID	Identification
IM	Inner membrane
IMAC	Immobilized metal ion affinity chromatography

ISET	Integrated selective enrichment target
IZ1	Izatnagar
k Da	Kilo Daltons
L	Lysis
LG	Lung
LPS	Lipopolysaccharide
LV	Liver
M	Milk
MAbs	Monoclonal antibody
MALDI-TOF MS	Matrix-assisted laser desorption ionization time-of-
WALDI-TOF WIS	flight mass spectrometry
MIP	Molecular imprinted polymer
MS	Mass spectrometry
MSN	Mesoporous silica nanoparticles
MSP	Main spectra projection
NH	Native hapten
NIP	Non-imprinted polymer
NL	No lysis
OIE	Office International des Epizooties
OM	Outer membrane s
OMP	Outer membrane protein
OMV	Outer membrane vesicles
P	Placenta
PCR	Polymerase chain reaction
PL	Partial lysis
PPb	Parts per billion
Q	Queen
RBPT	Rose-Bengal plate agglutination test

RC	Rough/Canis
R-LPS	Rough lipopolysaccharide
RPLN	Retropharyngeal lymph node
rRNA	Ribosomal ribonucleic acid
RTD	Routine test dilution
SC	She camel
SDS	Sodium dodecyl sulfate
SIP	surface imprinted polymer
S-LPS	Smooth lipopolysaccharide
SMLN	Supramammary lymph node
SNPs	Single-nucleotide polymorphisms
SP	Spleen
Tb	Tbilisi
UD	Uterine discharge
WB	Weybridge
WHO	World Health Organization

INTRODUCTION

Brucellosis is an emerging transboundary disease caused by the genus *Brucella* currently encompassing 12 species from terrestrial and marine mammals (**OIE Terrestrial Manual, 2016; Scholz** *et al.*, **2016**). The troublesome bio-risk group III brucellae are bacteriologically hard-to-diagnose due to their facultative intracellular nature, slow growth and fastidiousness (**Christopher** *et al.* (**2010**). The detection of this nasty group of bacteria constitutes one of the exceptions of the postulates established by Robert Koch for the diagnosis of disease etiological agents. The practical diagnosis of brucellosis is mainly indirect by uncovering whatever accessible of the *Brucella* antibodyome rather than the bacteria themselves. Direct detection of *Brucella*, or either its genome, proteome or lipidome is more trustworthy from the diagnostic point of view.

Broadly speaking, molecular recognition is a diagnosis based on the detection of omics, e.g. antibodyomics, genomics, transcriptomics, proteomics, glycomics, lipidomics, metabolomics, regulomics, secretomics, . . . etc. The first reliable microbial classification was achieved by comparative genomic 16S rRNA sequence analysis based on phylogenetic relationship. Compared to the conserved genomics, proteomics reflect more diversity in biomarkers resulting from continuous bacterial microevolution changing the *status quo* of genetic expression to proteins (**Seng** *et al.*, 2009). The bacterial proteome varies in response to disease and the surrounding environmental conditions including exposure to antibiotics allowing for better demarcation (**Shah and Gharbia**, 2017). Phyloproteomic clustering highly resembles taxonomy based on 16S rRNA analysis in bacterial biotyping (**Shah and Gharbia**, 2017) even at the strain level (**Culebras**, 2018).

Mass spectrometry is a group of magical analytical techniques for identifying the molecular mass as well as the chemical structure of compounds. Of the several mass spectrometry formats, the triple quadrupoles, quadrupole-time-of-flight hybrids and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) are the most common in the clinical sector. MALDI-TOF MS was first introduced by **Karas** *et al.* (1987) for molecular recognition of microorganisms