The Impact Of Neonatal Hyperbilirubinemia Management On Neonatal Intensive care Unit Outcome In Zagazig University Hospital

Thesis Submitted For Partial Fulfillment of PHD in Childhood Studied (Child Health and Nutrition) Department of Medical Studies for Children

$\mathcal{B}y$

Wael Hassan Ahmed Hassan

Master Degree of Pediatrics, Zagazig University

Under Supervision of

Dr. Medhat Hassan Shehata

Professor of Pediatrics Faculty of Postgraduate Childhood Studies Ain Shams University

Dr. Abdelrazik El-Sheikh

Professor of Pediatrics Faculty of Medicine Zagazig University

Dr. Rehab Abd Elkader Mahmoud

Professor of Pediatrics
Faculty of Postgraduate Childhood Studies
Ain Shams University

Dr. Ayman Mohamed Nada

Professor of Pediatrics
Faculty of Postgraduate Childhood Studies
Ain Shams University

Dr. Amira Raafat Ghonemi

Assistant Professor of Clinical Pathology Faculty of Medicine Zagazig University

Faculty of Postgraduate Childhood Studies
Ain Shams University
2019

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I'd like to express my respectful thanks and profound gratitude to **Prof. Medhat Wassan Shehata**, Professor of Pediatrics Institute of Postgraduate Childhood Studies Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Rehab Abd Elkader Mahmoud**, Professor of Pediatrics Institute of Postgraduate Childhood Studies Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Abdelrazik El-Sheikh, Professor of Pediatrics Faculty of Medicine Zagazig University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof. Ayman Mohamed Mada**, Professor of Pediatrics Institute of Postgraduate Childhood Studies Ain Shams University, for her kindness, supervision and cooperation in this work.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Amira Raafat Ghonemi**, Assistant Professor of Clinical Pathology Faculty of Medicine Zagazig University her meticulous supervision, kind guidance, valuable instructions and generous help.

Wael Hassan Ahmed Hassan

List of Contents

Title	Page No.	
List of Tables	i	
List of Figures	iii	
List of Abbreviations	vii	
Introduction	1	
Aim of the Study	5	
Review of Literature		
Bilirubin Metabolism	6	
Neonatal Jaundice	19	
 Management of Neonatal Hyperbilirubinemia 	55	
Patients and Methods	88	
Results	102	
Discussion135		
Summary156		
Conclusion159		
Recommendations	160	
References	162	
Master Sheet	199	
Appendices2		
Arabic Summary		

List of Tables

Table No.	Title	Page No.
Table (1):	Drugg that gauge significant dish	legement of
Table (1):	Drugs that cause significant disp bilirubin from albumin in vitro	
Table (2):	Zones of cephalocaudal prog	
	jaundice in term infants in relation	
	bilirubin level	
Table (3):	Summary of Bind Score	
Table (4):	Clinical features of bilirubin ence	
Table (5):	Approach for management of	· ·
T 11 (0)	newborn without hemolysis accor	0 0
Table (6):	Contraindication of phototherapy	
Table (7):	Amiel-Tison neurological a (ATNA) score.	
Table (8):	Summary of BIND score	
Table (9):	Summarize all the development	
	from birth to two years	
Table (10):	Comparison between group I ar	
	regarding demographic d	
	anthropometric measurements	
Table (11):	Comparison between both group	· -
	II regarding Total and direct bil	
	on admission and at discharg maximum total and direct bili	
	reached during incubation	
Table (12):	Comparison between group I ar	
•	regarding Onset of maximum bili	· -
Table (13):	Comparison between both group	
	II regarding CBC and other	•
m 11 (4.4)	results	
Table (14):	Comparison between both group	
Table (15).	II regarding Blood grouping of the	
Table (15):	Comparison between both group II regarding RH of the peopates.	0 1

List of Tables Cont...

Table No.	Title P	age No.
Table (16):	Comparison between group I and gro regarding Clinical manifestations sugge of Bilirubin encephalopathy	estive
Table (17):	Comparison between ATNA upon admi	
T 11 (10)	at 3 months and 6 months old in group	
Table (18):	Comparison between ATNA upon admit at 3 months and 6 months old in group	
Table (19):	Correlations between ATNA and bili level upon admission in both group	rubin
	group II.	
Table (20):	Comparison between Mean levels of A score upon admission, at 3 and 6 months	
	both groups.	
Table (21):	Correlations between BIND score v bilirubin level upon admission in grou	
	and group (II)	-
Table (22):	Follow-up mean levels of Bayley compactors at 3m and 6m in group (I)	
Table (23):	Follow-up mean levels of Bayley compactors at 3m and 6m in group (II)	posite
Table (24):	Correlations between Bayley comp scores and bilirubin level upon admissi both group I and group II at 3 months	posite ion in
	months old	
Table (25):	Comparison of Bayley composite s	
	between both groups at 3month a months.	
Table (26):	Comparison between group I and gro	up II

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Bilirubin production	
Figure (2):	Bilirubin synthesis, transport,	and
	excretion	
Figure (3):	Metabolic Pathway of the Degrad	
	of Heme and the Formation of Bilir	ubin9
Figure (4):	Conversion of heme to biliverdin	and
	then bilirubin	10
Figure (5):	Bilirubin transport and conjugation	112
Figure (6):	Show bilirubin metabolism	13
Figure (7):	Schematic representation of the	steps
	involved in bilirubin (B) throughp	ut in
	hepatocytes	
Figure (8):	UDP-glucuronosyl transferases (UGT	
Figure (9):	Neonatal jaundice	21
Figure (10):	A. Neonatal jaundice B. Identific	ation
_	is aided by pressure on the	skin
	(jaundiced) C. No jaundice revealed	
	pressure	38
Figure (11):	Demonstrates zones of cephaloca	audal
_	progression of jaundice in term in	fants
	in relation to serum bilirubin level	39
Figure (12):	Transcutaneous bilirubin estimatio	n41
Figure (13):	Relationship of albumin-bound	and
	unbound bilirubin levels in the vas	cular
	space to the entry, disposition	and
	clearance from CNS	44
Figure (14):	Cell types and metabolic proc	esses
_	affected by bilirubin in the CNS	
Figure (15):	Guidelines for use of photothe	
5	according to age	
Figure (16):	Mechanism of phototherapy	

List of Figures Cont...

Fig. No.	Title Page	No.
Figure (17):	Normal Bilirubin Metabolism and Bilirubin Metabolism during	
	Phototherapy	60
Figure (18):	Fluorescent blue lights phototherapy	61
Figure (19):	Fiberoptic blanket	62
Figure (20):	Neonate undergoing home phototherapy	
	with fiberoptic blanket	63
Figure (21):	Bilibed device Home	
Figure (22):	Infant undergoing home Bilibid phototherapy	
Figure (23):	The (LED) device	
Figure (24):	Intensive Phototherapy guidelines for	
1180110 (=1)1	all gestational ages	
Figure (25):	Opaque eye shields	
Figure (26):	Bilichek for evaluation of phototherapy	
g	in jaundiced babies	
Figure (27):	Possible mechanisms of NNPT for	
8 (-)	allergic diseases	
Figure (28):	Show TSB levels that need exchange	
8 (-/	transfusion	84
Figure (29):	Technique of exchange transfusion	
Figure (30):	Algorithm for the management of	
8 , ,	jaundice in the newborn nursery	90
Figure (31):	Phototherapy pathway	
Figure (32):	Exchange transfusion pathway	
Figure (33):	Hour specific bilirubin nomogram	
Figure (34):	Flow chart of both group I&II	
Figure (35):	Percentage of distribution of males and	
	females in both groups	
Figure (36):	Percentage of breast fed neonates in	
3 • •	both groups	105
Figure (37):	Total bilirubin level on admission on	
	both groups	107

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (38):	Maximum total bilirubin level on	hoth
1 1gu1 & (00).		107
Figure (39):	Percentage of distribution of k	
1184110 (00).	groups of the neonates	
Figure (40):	Percentage of distribution of Rh+	
8 - \ · · /	Rh- in both groups	
Figure (41):	Age of studied neonates on admission	
	the two studied groups	
Figure (42):	Onset of Jaundice (days) in group I	
Figure (43):	Onset of Jaundice (days) in group II	11 3
Figure (44):	Phototherapy in group I	113
Figure (45):	Phototherapy in group II	114
Figure (46):	Exchange transfusion in group I	114
Figure (47):	Exchange transfusion in group II	115
Figure (48):	Comparison between group I and g	
	II regarding high arched back	117
Figure (49):	Comparison between ATNA	upon
	admission and at 3 months old in gro	up I119
Figure (50):	-	upon
	admission and at 3 months old in grou	-
Figure (51):	Correlation between bilirubin	-
	admission and ATNA upon admission	
	group (I)	
Figure (52):	Correlation between bilirubin	
	admission and ATNA at 3 month	
	age in group (I).	
Figure (53):	Correlation between bilirubin	-
	admission and ATNA at 6 month	
T' . (FA)	age in group (I).	
Figure (54):	Correlation between bilirubin	-
	admission and ATNA upon admission	
	group (II)	124

List of Figures Cont...

Fig. No.	Title P	age No.
Figure (55):	Correlation between bilirubin up	
	admission and ATNA at 3 months age in group (II)	125
Figure (56):	Correlation between bilirubin up admission and ATNA at 6 months of a	
	in group (II)	125
Figure (57):	Correlation between BIND score ver	
O	bilirubin level upon admission in group	(I)127
Figure (58):	Correlation between BIND score ver	sus
3 , ,	bilirubin level upon admission in group (II)128
Figure (59):	Comparison between group I and gro	
8 , ,	II regarding duration of hospital stay	-
Figure (60):	Outcome in group I	
Figure (61):	Outcome in group II	

List of Abbreviations

Abb.	Full term
$\Lambda\Lambda DD$	Automated auditory brainstem response
	Automatea auditory oramstem response American Academy of Pediatrics
	American Academy of Fedulities Acute bilirubin encephalopathy
	Acute out tooth encephalopathy Amiel-Tison Neurological Assessment
	Adenosine triphosphate
	Biliary atresia
	Brainstem auditory evoked response
	Brainsiem additory evoked response Bronze baby syndrome
	fronze odby synarome free bilirubin
	Bilirubin-induced neurologic dysfunction
<i>BR</i>	
	Biliverdin
	cesarean section
	Complete blood picture
	complete blood picture chronic bilirubin encephalopathy
	Chronic outraoth encephatopathy Choledochal cyst
	Choiceáochaí cysi Canalicular multispecific organic anion
CMOAI	
CNI	transporter Crigler Najiar condrome tone I
	Crigler-Najjar syndrome type I Crigler-Najjar syndrome type II
	Crigier-ivajjar synarome type 11 Carbon monoxide
	Caroon monoxiae Conventional phototherapy
	Conventional phototherapy Conventional phototherapy
	Conventional photoinerapy C-reactive protein
	C-reactive protein C-reactive protein
	Direct Antiglobulin Test Direct Coombs Test
	Exchange transfusion
	Femoral vein
	Glucose 6-phosphate dehydrogenase
	Gilbert's syndrome
	Glutathione S-transferases
по	Hemoglobin

List of Abbreviations Cont...

Abb.	Full term
HR	. hyperbilirubinemia
Hct	
	. Hemolytic disease
	. Hepatobiliary iminodiacetic acid
	. Inborn errors of metabolism
<i>IgG</i>	. Immunoglobulin G
<i>IL</i>	
ILCOR- CoSTR.	. International Liaison Committee On
	Resuscitation- Consensus on Science with
	$Treatment\ Recommendations$
<i>IQ</i>	. intellectual impairment
<i>IVIG</i>	. Intravenous immune globulin
<i>LEDs</i>	. Light-emitting diodes
<i>LMICs</i>	. Low- and middle-income countries
<i>MN</i>	. Melanocytic naevus
	. Multi-drug resistance protein 2
	. Neonatal blue-light phototherapy influences
	. Neurodevelopmental delay
	. Necrotising enterocolitis
<i>NICE</i>	National Institute for Health and Clinical
3.77.07.7	Excellence
	. Neonatal intensive care unit
	. Neonatal phototherapy
	. Number needed to treat
	. Organic-anion transporting polypeptides
	. Patent ductus arteriosus
	. progressive familial intrahepatic cholestasis
<i>PT</i>	2.0
	. Rhesus negative
<i>Rh+ve</i>	
RhD	
	. Recombinant human erythropoietin
11 <i>UF</i>	. retinopathy of prematurity

List of Abbreviations Cont...

Abb.	Full term
<i>SPSS</i>	Statistical Package for the Social Science
<i>TcB</i>	Transcutaneous bilirubinometry
<i>TNF</i>	Tumor necrosis factor
<i>TSB</i>	Total serum bilirubin
	unconjugated bilirubin
<i>UDP</i>	Uridine diphosphate
	Uridine diphospho glucuronosyltransferase
	University Hospital of the West Indies
UV	Umbilical vein
	Umbilical venous catheter

ABSTRACT

Background: Neonatal hyperbilirubinemia, with consequent encephalopathy, remains a common cause of morbidity in developing countries so the challenge is early detection and treatment of neonatal hyperbilirubinemia to prevent adverse neurologic outcome.

Objective: The aim of this study was to assess the protocol of management of neonatal jaundice of Zagazig University hospital (according to Amercian Academy of Pediatrics guidelines) in comparison to the protocol Royal College University in UK according to outcome and feedback.

Patients and Methods: This is a prospective study including 213 neonates suffering from indirect hyperbilirubinemia admitted to the NICU of the Pediatric Hospital of Zagazig University Hospital between July 2013 and July 2014, However, parents of 8 newborns did not want to participate in the study, 5 newborns were excluded as they had exclusion criteria, and a total of 200 newborns with significant hyperbilirubinemia were finally included in the study during the study period.

Results: The comparison between ATNA upon admission, at 3M and 6 M old among all studied neonates. It shows that ATNA was significantly lower (optimal) at 3m compared to upon admission which means improvement in neurological performance, however non significant difference was detected between ATNA at 3m & 6m old in both groups. Higher statistically significant positive correlations was detected between bilirubin level upon admission and follow up versus ATNA score (intial, 3M and 6M) in both groups.

Conclusion: Neurodevelopmental assessment allows the detection of mild and moderate brain abnormalities and developmental delay.

Keywords: Neonatal hyperbilirubinemia, necrotising enterocolitis, intellectual impairment

INTRODUCTION

eonatal jaundice is the yellow discoloration of the skin and eyes due to elevated bilirubin levels in the bloodstream of a newborn. Bilirubin is produced by the breakdown of red blood cells. Jaundiced infants are unable to process bilirubin at a normal rate or they have an abnormally high amount of bilirubin in their bloodstream, resulting in a buildup of the yellow colored bilirubin. That build up is called hyperbilirubinemia and is the cause of jaundice (Hansen and Thor, 2016).

Physiologic jaundice is also known as transient jaundice because it is the more common of the two types and is much less harmful. When infants are born, their livers are not fully developed. That immaturity makes it difficult for the liver to filter all of the bilirubin, the yellow-colored byproduct of red blood cell breakdown, from the bloodstream, resulting in infants with yellow tinged skin. Physiologic jaundice is the obstruction of the pathway for normal red blood cell breakdown (Bradley and Arianna, 2017).

Bilirubin levels with a deviation from the normal range and requiring intervention would be described as pathological jaundice. Appearance of jaundice within 24 h due to increase in serum bilirubin beyond 5 mg/dl/day, peak levels higher than the expected normal range, presence of clinical jaundice more than 2 weeks and conjugated bilirubin (dark urine staining the clothes) would be categorized under this type of jaundice (Sana et al., 2016).