بسم الله الرحمن الرحيم

اهالوا سبحانك لا علم لنا إلا ما "هيامتنا إنك أنه الحكيم"

حدق الله العظيم

سورة البعرة الآية 32

ASSESSMENT OF BOND STRENGTH OF TWO NOVEL CERAMIC MATERIALS AFTER DIFFERENT SURFACE TREATMENTS

THESIS

Submitted to the Faculty of Oral and Dental Medicine, Cairo University in partial fulfillment of the requirements of the Master degree in Dental Sience (Fixed Prosthodontics)

By

Maged Mostafa Yousef El-Naggar B.D.S. Cairo University

Faculty of Oral and Dental Medicine
Cairo University
2011

Supervisors

Dr. Ghada Ibrahim Shehab

Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo university

Dr. Mona Attia El-Agroudi

Associate Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo university

Dedication

I could never be grateful enough to my mother, for standing beside me all over the way and for being the reason of each and every step forward in my life, my father for his endless and supporting advice, my brother and sisters, and last but not least my wife and son, to whom I promised a better tomorrow.

<u>Acknowledgement</u>

It has been a great honor to undertake this research under the valuable supervision of **Dr. Ghada Ibrahim Shehab**, Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, to whom I feel most grateful for her unsurpassed guidance, constructive criticism and great support in accomplishing this work.

A special acknowledgment for **Dr. Mona Attia El-Agroudi**, Associate Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her continuous, endless help, motivation and encouragement through the various stages of this study.

Regarding technical part of the study, my deep thanks to **Dr. Karl Hany, Dr. Ahmed Seliman and Dr. Mohammed Abbass**, who gave me all kinds of support till this work became a reality.

Finally my deep gratitude to **Dr. Ehab Mosleh and staff members** of Fixed Prosthodontics Department for affording facilitations to accomplish this work.

Contents

	Page
List of Tables	i
List of Figures	ii
Introduction	1
Review of literature	3
Aim of the study	30
Materials and Methods	31
Results	63
Discussion	95
Summary and Conclusion	120
References	124
Arabic Summary	1

List of Tables

Table	Title	Page
number		
Table 1	Material, composition and manufacturer	32
Table 2	Classification of the samples	33
Table 3	Mean shear bond strength values of IPS Empress 2	64
	group with different surface treatments	
Table 4	Mean shear bond strength values of In-Ceram Zirconia	66
	group with different surface treatments	
Table 5	Mean shear bond strength values of IPS Empress 2 and	68
	In-ceram Zr after sandblasting surface treatment	
Table 6	Mean shear bond strength values of IPS Empress 2 and	70
	In-ceram Zr after sandblasting +etching surface	
	treatment	
Table 7	Mean shear bond strength values of IPS Empress 2 and	72
	In-ceram Zr after sandblasting + silane surface	
	treatment	
Table 8	Mean shear bond strength values of IPS Empress 2 and	74
	In-ceram Zr after sandblasting +etching + silane	
	surface treatment	
Table 9	Descriptive statistics of shear bond strength values for	76
	both ceramic materials with different surface	
	treatments	
Table 10	Two way analysis of variance ANOVA test of	78
	significance comparing variables affecting shear bond	
	strength mean values	
Table 11	Modes of failure of IPS Empress 2 and In-Ceram	90
	Zirconia	

List of Figures

Figure	Title	Page
number		
Figure 1	Assembled split copper mold	35
Figure 2	Disassembled split copper mold	35
Figure 3	Sprued wax patterns attached to the investment ring	35
	base	
Figure 4	Burnout furnace	37
Figure 5	Preaheating investment ring, ceramic ingots and	37
	alumina plunger in burnout furnace	
Figure 6	Placement of ingots and alumina plunger in the	38
	investment ring	
Figure 7	Press furnace (EP600 Combi)	39
Figure 8	Pressing in EP600 Combi press furnace	39
Figure 9	Cutting the investment ring at the marked point	42
Figure 10	Divestment using glass polishing beads	42
Figure 11	VitaSonic	43
Figure 12	Slip applied into split copper mold	43
Figure 13	Vita InCeramat	44
Figure 14	Vita In-Ceram Optimizer	46
Figure 15	Vita Vacumat	46
Figure 16	Glass mixture coated specimens before glass	47
	infiltration Firing	
Figure 17	Specimens after glass infiltration firing	47
Figure 18	Sandstorm Professional Microabrasive Blaster	50
Figure 19	IPS Ceramic Etching gel (< 5% hydrofluoric acid)	50
Figure 20	Monobond-S silane coupling agent	52
Figure 21	Sputter coater	52
Figure 22	Gold coated samples	53
Figure 23	Scanning Electron Microscpe (SEM)	53
Figure 24	Base of the cementing device with the twin sample	54
	placed in the central recess	
Figure 25	2kg metal load	54
Figure 26	The plastic cylinder	54
Figure 27	RelyX ARC resin cement	57

Figure 28	Ceramic twin sample within the cementing device	57
Figure 29	The two holders and the clamp fixture	60
Figure 30	Testing machine	60
Figure 31	The two holders mounted to the testing machine	61
Figure 32	Holders secured by clamp fixture	61
Figure 33	Digital microscope	62
Figure 34	Histogram showing shear bond strength mean values of IPS Empress 2 group with different surface treatments	66
Figure 35	Histogram showing shear bond strength mean values of In-Ceram Zirconia group with different surface treatments	68
Figure 36	Histogram showing shear bond strength mean values of IPS Empress 2 and In-Ceram Zr after sandblasting surface treatment	70
Figure 37	Histogram showing shear bond strength mean values of IPS Empress 2 and In-Ceram Zr after sandblasting and etching surface treatment	72
Figure 38	Histogram showing shear bond strength mean values of IPS Empress 2 and In-Ceram Zr after sandblasting and silane surface treatment	74
Figure 39	Histogram showing shear bond strength mean values of IPS Empress 2 and In-Ceram Zr after sandblasting, etching and silane surface treatment	76
Figure 40	Histogram showing shear bond strength mean values for both ceramic materials as function of surface treatment	78
Figure 41-A	Scanning electron micrograph of IPS Empress 2 ceramic surface subjected to sandblasting	79
Figure 41-B	Scanning electron micrograph of IPS Empress 2 ceramic surface subjected to sandblasting and etching	80
Figure 41-C	Scanning electron micrograph of IPS Empress 2 ceramic surface subjected to sandblasting and silane	81
Figure 41-D	Scanning electron micrograph of IPS Empress 2 ceramic surface subjected to sandblasting, etching and silane	82
Figure 42-A	Scanning electron micrograph of In-Ceram Zirconia ceramic surface subjected to sandblasting	83

Figure 42-B	Scanning electron micrograph of In-Ceram Zirconia ceramic surface subjected to sandblasting and etching	84
Figure 42-C	Scanning electron micrograph of In-Ceram Zirconia ceramic surface subjected to sandblasting and silane	85
Figure 42-D	Scanning electron micrograph of ceramic surface subjected to sandblasting, etching and silane	86
Figure 43	Digital microscpic images showing fractured samples of IPS Empress 2 subjected to Sandblasting (mode 1)	91
Figure 44	Digital microscpic images showing fractured samples of IPS Empress 2 subjected to Sandblasting + Etching (mode 2)	91
Figure 45	Digital microscpic images showing fractured samples of IPS Empress 2 subjected to Sandblasting+ Silane (mode 2)	92
Figure 46	Digital microscpic images showing fractured samples of IPS Empress 2 subjected to Sandblasting + Etching + Silane (mode 3)	92
Figure 47	Digital microscpic images showing fractured samples In-Ceram Zirconia subjected to Sandblasting (mode 2)	93
Figure 48	Digital microscpic images showing fractured samples of In-Ceram Zirconia subjected to Sandblasting + Etching (mode 1)	93
Figure 49	Digital microscpic images showing fractured samples of In-Ceram Zirconia subjected to Sandblasting+ Silane (mode 2)	94
Figure 50	Digital microscpic images showing fractured samples of In-Ceram Zirconia subjected to Sandblasting + Etching + Silane (mode 1)	94

Introduction

Introduction

Interest in all-ceramic restorations has increased recently.

Ceramic veneers, inlays, onlays, complete coverage crowns and even three unit bridges have gained popularity.

Newer types of ceramic materials have evolved such as Aluminous porcelain, Optec HSP, In-Ceram, In-Ceram Zirconia, Cerec, Celay, IPS Empress I, IPS Empress 2, Optec pressable ceramic, Dicor, Duceram LFC and Procera.

These restorations offer superior esthetics compared with metal-ceramic restorations because they eliminate metal infrastructures and provide optimal distribution of reflected light.

However, ceramic restorations are very brittle so, in most situations they need to be bonded strongly to the tooth structure with an adhesive luting cement.

Zinc phosphate cement has been the traditional cement used for cementation of restorations for many years. However, other materials, such as polycarboxylate, glass ionomer and resin cements, form chemical bond to tooth structure and have greater compressive strength than zinc phosphate cements.

It seems that treating the adherent surfaces for increasing surface area appeared to be the key factor concerning ceramic-composite bond strength.

The surface microstructure of all-ceramic restorations is an important component of an effective bonding substrate. Advances in adhesive dentistry have resulted in the recent introduction of modern surface conditioning methods in order to optimize bond strength at the ceramic/cement interface.

Although several researchers have studied different ceramic surface treatments and different resin cements to increase bond strength at the ceramic/resin interface. However it is not clear whether roughening (by sandblasting, diamond burs, hydrofluoric acid etching, or laser), chemical bonding (by silane), or combination of the two is the most effective surface treatment for bonding of ceramic restorations to resin cements. Moreover, with the introduction of several new resin cements and ceramic materials, there is confusion among clinicians about which product and technique to be used.

Clarifying and comparing the effect of these surface treatments on different ceramic materials is an important factor which is required to search for an optimum system that leads to higher bond strength.

Review of Literature

Review of literature

Dental ceramics are appreciated as highly esthetic restorative materials with optimal esthetic properties as translucency and fluorescence. Furthermore, dental ceramics achieve other desirable characteristics include chemical stability, biocompatibility, high compressive strength, and a coefficient of thermal expansion similar to that of tooth structure. In spite of their many advantages, ceramics are fragile under tensile strain.⁽¹⁾

The introduction of new ceramics with different compositions combined with the use of novel laboratory techniques has resulted in improved mechanical properties and higher esthetics of these restorations.⁽²⁾

Even if it is agreed that retention of full coverage extracoronal all-ceramic restorations relies primarily on the retention and resistance forms of tooth preparation, successful bonding between restoration and tooth tissues with resin cement is still highly desirable.⁽³⁾ The cementation process is vital for the clinical success of all-ceramic restorations.⁽⁴⁾

Various surface treatment methods to increase the bond between ceramic surface and composite resin have brought the bond strength values to clinically accepted level.