

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Effect of Natural Fibers on Properties of Polymeric Composites

A thesis Submitted in partial fulfillment of the requirements of the degree of M.Sc. in mechanical Engineering

Submitted By Mohammed Sameh Ahmed Ahmed

Bachelor of Science in Mechanical Engineering Faculty of Engineering, Ain Shams University, 2010

Under Supervision of

Prof. Dr. M. H. Abd EL-Latif Dr. Ramadan B. M. El-Gamsy Dr. Ayman A. Abd El-Wehab

Faculty of Engineering - Ain shams University

Cairo 2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Effect of Natural Fibers on Properties of Polymeric Composites

A thesis Submitted in partial fulfillment of the requirements of the degree of M.Sc. in mechanical Engineering

Submitted By Mohammed Sameh Ahmed Ahmed

Bachelor of Science in Mechanical Engineering Faculty of Engineering, Ain Shams University, 2010

Supervising committee

Name and affiliation

Signature

Prof. Dr. M. Hazem Abd EL-Latif

Dr. Ramadan B. M. El-Gamsy

Dr. Ayman A. Abd El-Wehab

Date:

Examiners Committee

The Undersigned certify that they have read and recommended to the faculty of Engineering, Ain Shams University for Acceptance a thesis entitled "Effect of Natural Fibers on Properties of Polymeric Composites", Submitted by Mohammed Sameh Ahmed, in partial fulfillment of the requirements for the degree of M.Sc. in Mechanical Engineering.

Name	Signature
1- Prof. Dr. Hala Abd EL-Hakeem Abd EL-Hady Hassan	
2- Prof. Dr. Nabil Kamal Fatahalla	
3- Prof. Dr. Mohammed Hazem Abd EL-Latif	

Researcher Data

Name : Mohammed Sameh Ahmed Ahmed

Date of birth : 18-5-1988

Place of birth : Cairo, Egypt

Academic Degree : Bachelor's

Field of Specialization : Mechanical Engineering

University issued the degree : Ain Shams university

Date of issued degree : 2010

Current Job : Production engineer

E-mail : Mohsamehahmed23@gmail.com

Thesis summary

Due to environmental pollution aspects and increase of harmful emissions around us which caused from using non-natural compounds in the field of industry, many different health and environmental problems have been resulted. Natural fibers became good candidates to invade the field of industry as an alternative to synthetic fibers due to low cost, low density and good properties compared with other fibers.

In this research, the effect of natural fiber on polymeric composites was studied; banana Pseudo stem BPS fiber was selected due high availability (3.5 million banana trees /year) and non-exploitation of it, and select acrynitrile butadiene styrene (ABS) due to its applications in automotive industry and 3D printing and increase in market share forecasting till 2020.

Firstly, Banana Pseudo Stem (BPS) fibers were extracted by fiber extractor machine then crushed by crushing machine and sieved to (short size fibers with average size 0.21mm) by three manual hand sieves followed by alkaline treatment (5% NaOH – 1% HCL). Moisture content test was done for fiber before and after treatment, the treated fibers were dried in oven at 80° C for 48 hrs.

Secondly, ABS granules were dried in oven at **80°**C for 48 hrs. **Thirdly**, BPS fiber with different mass fraction (0-10-20-30 %) were mixed with ABS granules at **180°**C by thermal mixer machine, then the BPS/ ABS mixture was crushed by crushing machine followed by injection molding of BPS/ABS crushed granules at temperatures of (**150°**C and **220°**C), pressure equal to 60 bar and the injection and cooling times are 10 and 25 seconds respectively.

The BPS fibers under investigation were characterized using physical and thermal analysis.

The composite specimens with different fiber weight percentage were characterized through tensile, impact, MFI, and dimensional stability tests, beside SEM, TGA and DSC analysis.

Acknowledgement

All praise is due to ALLAH alone, Lord of all the creations.

I would like to express my sincere thanks and gratitude to my supervisor **Prof.Dr. Mohamed Hazem Abd El-latif** and **Dr. Taiseer Ahmed** for their invaluable guidance and tremendous support throughout this research.

Thanks are also due to *Dr. Ramadan Badoui Mohamed El-Gamasy and Dr. Ayman Ali Abd El-Wehab* for their great help in my experimental work.

Without their help and support, this work wouldn't be performed perfectly.

Feeling with gratitude to *Prof. Dr. Doaa Essamey El.Nashar*, Head of Polymers and Pigment Department, at National Research Centre for her advices and support for me to complete my experiments at National Research Centre.

I have had the pleasure of knowing and working alongside with all staff of Doctors at Science and Technology Center of Excellence "STCE" especially **Dr. Ahmed Saleh & Dr. Ahmed Al-Azali.**

Finally, I would like to acknowledge debt to my father, my mother, my wife, my daughter, my brothers, and all my family for their encouragement and helping me through all this work. I would like to thank my friends for being considerate and thoughtful.

Contents

	Page
Thesis summary	I
Acknowledgement	VI
Contents	VII
List of Figures	X
List of Tables	XIII
Nomenclature	XIV
Chapter 1	1
Introduction	1
1.1 Background	1
1.2 Problem statement	1
1.3 Research objectives	1
Chapter 2	2
Literature survey	2
2.1 Introduction.	2
2.2 Composite Material.	3
2.3 Polymer Matrix composite (PMCs).	4
2.4 Polymers properties and their applications.	4
2.5 Fibers Classification and their applications	11
2.5.1 Synthetic fibers in polymeric composites	12
2.5.2 Natural fibers in polymeric composites	12
2.6 Economy of NFCs and its applications	15
2.7 Treatment of natural fibers NFs.	21
2.7.1 Mercerization (Alkali) treatment.	22
2.7.2 Silane treatment.	23
2.7.3 Maleic anhydride (Maleic coupling agent) treatr	
2.8 Fiber composite strength	26
2.9 Composites fabrication processes.	31
2.10 Some previous researches.	35

VIII

Chapter 3		38
Experimental work		38
3.1 Introduction		38
3.2 Ma	terials	39
3.2.1	Fibers	39
3.2.2	Polymer	39
3.3 Spe	ecimen preparation	40
3.3.1	Fiber preparation	40
3.3.2	Polymer preparation	42
3.3.3	Fabrication of BPS / ABS Composite.	43
3.3.4	Coding of NFRCs.	46
3.4 Ma	terials Characterization	47
3.4.1	BPS fiber characterization	47
3.4.	1.1 Physical properties	47
3.4.	1.2 Thermal analysis	47
3.4.	1.3 Moisture content test	48
3.4.2	BPS/ABS composite Characterization	48
3.4.	2.1 Determination of Density	48
3.4.	2.2 Water absorption and Thickness swelling test	49
3.4.	2.3 Melt flow index test of BPS/ABS composite	50
3.4.	2.4 Tensile test.	51
3.4.	2.5 Impact test.	51
3.4.	2.6 SEM Analysis.	52
3.4.	2.7 Differential Scanning Calorimetry (DSC) Analysis.	53
3.4.	2.8 Thermogravimetric Analysis (TGA)	53
3.4.	2.9 Dimensional stability test of BPS/ABS composite	54
Chapter 4		55
Results & Di	scussion	55
4.1 BP	S Fiber Characterization	55
4.1.1	Physical properties and chemical composition of BPS fiber	55
4.1.2	Thermal stability of BPS fiber	56

4.1.3 Moisture Content (MC) test of BPS fiber	57
4.1.4 Water absorption of BPS fiber	57
4.2 BPS/ABS Composite Characterization	58
4.2.1 Density of (BPS / ABS) composite	58
4.2.2 Water Absorption of (BPS / ABS) composite	59
4.2.3 Thickness swelling of (BPS / ABS) composite	60
4.2.4 Melt flowability of (BPS / ABS) composite	61
4.2.5 Tensile Test of (%BPS / ABS) composite	61
4.2.5.1 Effect of the weight percentage w.t% of fibers on UTS of	
composites	63
4.2.5.2 Effect of the weight percentage w.t% of fibers on Young's	
modulus and Fracture strain % of composites	64
4.2.5.3 Effect of the weight percentage w.t% of fibers on toughness	SS
of composites	65
4.2.5.4 Effect of the weight percentage w.t% of fibers on Proof	
stress (0.2%) of composites	65
4.2.6 SEM study of the fracture surface (%BPS/ABS) composites	66
4.2.7 Effect of fiber wt% on composite impact toughness	68
4.2.8 DSC analysis	69
4.2.9 TGA analysis	71
4.2.10 Dimensional Stability of BPS/ABS composite	75
Chapter 5	78
Conclusions	78
References	81

List of Figures

Fig 2-1 Global market of composite materials in 2017 [2].	2
Fig 2-2 Growth opportunities and different application markets (2019- 2024) [3]	3
Fig 2-3 The classification of composites based on matrix types [6]	4
Fig 2-4 Molecular structure of (a) thermoplastics TP (b) thermosets TS [14]	5
Fig 2-5 Different types of repeated unit of copolymers	6
Fig 2-6 Chemical structure of ABS [13].	6
Fig 2-7 U.S. Acrynitrile Butadiene Styrene market volume,	7
Fig 2-8 Chemical structure of selected thermoplastic polymers [11]	. 10
Fig 2-9 Classification of Fibers (natural and synthetic) [18].	. 11
Fig 2-10 Manufacturing consumed energy of some natural and synthetic fibers [23]	. 16
Fig 2-11 NF world production (a) in Million tons (b) in US \$ billion [33].	17
Fig 2-12 Applications of NF in automotive sector [23].	17
Fig 2-13 Natural fiber structure [36].	. 18
Fig 2-14 Cellulose molecules structure [22, 34, 35].	. 19
Fig 2-15 Hemicellulose molecules structure [22, 34, 35].	20
Fig 2-16 Lignin molecules structure [22, 34, 35].	. 20
Fig 2-17 Alkali treatment [35]	. 22
Fig 2-17 Alkali treatment [35]	. 23
Fig 2-17 Alkali treatment [35]	23
Fig 2-17 Alkali treatment [35]	23
Fig 2-17 Alkali treatment [35]	23 25 26
Fig 2-17 Alkali treatment [35]	23 25 26 27
Fig 2-17 Alkali treatment [35]	23 25 26 27 28
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31 32
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31 32 33
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31 32 33 34
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31 32 33 34 38
Fig 2-17 Alkali treatment [35]	23 25 26 27 28 30 31 32 33 34 38 39

Fig 3-6 System of three manual sieves of mesh sizes (40, 60 and 80)	42
Fig 3-7 Banana Pseudo stem fibers	42
Fig 3-8 granules of ABS polymer (Dried).	42
Fig 3-9 Fabrication Sequence For (BPS/ABS) composite.	43
Fig 3-10 Thermal Mixing machine	44
Fig 3-11 The Mixed composites of (20% BPS fiber/ ABS)	44
Fig 3-12 Crushing Machine.	45
Fig 3-13 Drying Machine.	45
Fig 3-14 Injection molding Machine.	46
Fig 3-15 Injected tension samples for 10% BPS/ABS composite.	46
Fig 3-16 TGA Q500 device	48
Fig 3-17 A schematic representation of melt flow indexer [60].	50
Fig 3-18 Universal Testing Machine	51
Fig 3-19 Digital Izod & Charpy impact tester.	52
Fig 3-20 Specimen preparation before SEM analysis	52
Fig 3-21 SEM analysis setting for analyzed specimen.	53
Fig 4-1 photographs obtained from optical microscope	55
Fig 4-2 TGA analysis for BPS fiber	56
Fig 4-3 water absorption of BPS fiber (untreated- treated).	58
Fig 4-4 Density of BPS/ABS composites	58
Fig 4-5 Water absorption as a function of time for BPS/ABS composites.	59
Fig 4-6 Thickness swelling as function of time for BPS/ABS composites	60
Fig 4-7 Relationships between water absorption and thickness swelling	60
Fig 4-8 Effect of fiber wt% on melt flow index MFI of BPS/ABS composite	61
Fig 4-9 Load - displacement curve for (0%BPS /ABS) specimen.	62
Fig 4-10 Load - displacement curve for (10% BPS /ABS) specimen.	62
Fig 4-11 Load - displacement curve for (20% BPS /ABS) specimen.	63
Fig 4-12 Load - displacement curve for (30% BPS /ABS) specimen.	63
Fig 4-13 UTS for BPS/ABS with different wt% fiber weight percentage	64
Fig 4-14 Young's modulus for BPS/ABS with different wt% fiber weight percentage	64
$\textbf{Fig 4-15} \ \text{Fracture strain \% for BPS/ABS with different wt\% fiber weight percentage} \ldots$	65
Fig 4-16 Toughness for BPS/ABS with different wt% fiber weight percentage	65
Fig 4-17 Proof stress 0.2% for BPS/ABS with different wt% fiber weight percentage	65
Fig 4-18 The SEM micrograph for (10% BPS/ABS) sample composite	67
Fig 4-19 The SEM micrograph for (20% BPS/ABS) sample composite	67

Fig 4-20	The SEM micrograph for (30% BPS/ABS) sample composite	68
Fig 4-21	The impact strength diagram at different fiber weight percentage	68
Fig 4-22	DSC curve for ABS specimen.	69
Fig 4-23	DSC curve for 10% BPS/ABS specimen	69
Fig 4-24	DSC curve for 20% BPS/ABS specimen	70
Fig 4-25	DSC curve for 30% BPS/ABS specimen	70
Fig 4-26	Glass transition temperature Tg at different wt% fiber weight.	71
Fig 4-27	TGA curve for 0% BPS/ABS specimen.	72
Fig 4-28	TGA curve for 10% BPS/ABS specimen.	73
Fig 4-29	TGA curve for 20% BPS/ABS specimen.	73
Fig 4-30	TGA curve for 30% BPS/ABS specimen.	74
Fig 4-31	Total weight residue % at 500 °C at different fiber weight percentage	75
Fig 4-32	Coefficient of shrinkage for parallel Direction of injection molding	76
Fig 4-33	Coefficient of shrinkage for transverse Direction of injection molding	76
Fig 4-34	Equivalent shrinkage Coefficient of BPS/ABS composite	77

List of Tables

Table 2-1 Physical properties of molded ABS [13].	8
Table 2-2 Some properties of some thermoplastics [12].	9
Table 2-3 Some properties of some thermosets [12].	9
Table 2-4 Properties of some natural and synthetic fibers [22, 23].	13
Table 2-5 The estimated amount of some of AGW in Egypt [26].	14
Table 2-6 Cost comparison between some natural and synthetic fibers [23]	16
Table 2-7 Chemical composition of selected NF [23, 35].	21
Table 4-1 average fiber length, diameter, and aspect ratio	55
Table 4-2 Chemical composition of BPS fibers	56
Table 4-3 The moisture content of UBPS and TBPS fiber	57
Table 4-4 Degradation temperatures obtained from TGA curves.	74

Nomenclature

Symbols		
T_g	Glass transition temperature	[°C]
T_{m}	Melting temperature	[° C]
σ	Tensile load	[MPa]
l_c	Fiber critical length	[mm]
d	Fiber diameter	[µm]
$ au_c$	Fiber- matrix bonding strength	[MPa]
σ_f^*	Fiber tensile strength	[MPa]
$oldsymbol{\epsilon_f^*}$	Fiber rupture strain	
ϵ_m^*	Matrix yield strain	
σ_f^* σ_m^*	Fiber fracture tensile strength	[MPa]
$\boldsymbol{\sigma}_m^*$	Matrix fracture tensile strength	[MPa]
E	Modulus of elasticity	[GPa]
V_{min}	Minimum volume fraction of fiber	
$oldsymbol{\sigma}_c^u$	Failure tensile strength for composite	[MPa]
$oldsymbol{\sigma}_c^m$	Failure tensile strength for matrix	[MPa]
K	Fiber efficiency parameter	

Abbreviations

WA%

PMCs Polymer matrix composite materials **CMCs** Ceramics matrix composite materials **MMCs** Metallic matrix composite materials **TPCs** Thermoplastic composite materials **TSCs** Thermosets composite materials TP Thermoplastic polymer TS Thermoset polymer **SBR** Styrene-butadiene rubber **NBR** Nitrile rubber **ABS** Acrynitrile butadiene styrene **LDPE** Low density polyethylene **HDPE** high density polyethylene PP Poly propylene **PVC** Poly vinyl chloride PS Poly styrene **PET** Polyethylene terephthalate NF Natural fiber SF Synthetic fiber **BPS** Banana Pseudo Stem fiber **AGW** Agricultural waste BF Banana fiber **NFCs** Natural fiber composites **NFRCs** Natural fiber reinforced composites MA Maleic Anhydride **RIM Rim Injection Molding** MC Moisture Content **SEM** Scanning Electron Microscope

Water absorption percentage