

Ain Shams University

Faculty of Engineering

Electrical Power & Machines Department

Investigation of Maximum Power Point Tracking Techniques in Photovoltaic Systems with Special Reference to Artificial Intelligence Methods

Submitted by:

Eng. Moaazz Shoaib Abdel Salam

A Thesis Submitted for the Requirement of the Degree of Master of Sciences in Electrical Power Engineering

Supervised by:

Prof. Dr. M.A.L.Badr

Dr. Khaled AbdelAty

Cairo 2018

Supervisors Committee

Name, Title and Affiliation

Signature

- Prof. Dr. Mohammed Abdel Latif Badr Electrical Power and Machines Department Faculty of Engineering, Ain Shams University
- 2. Dr. Khaled AbdelAty Mohamed
 Electrical Power and Machines Department
 Faculty of Engineering,
 Ain Shams University

Examiners Committee

Name, Title and Affiliation

Signature

- Prof. Dr.A.B.Kotb
 Electrical Engineering Department
 Faculty of Engineering
 Al-Azhar University
- 2. Prof. Dr. M.A.Moustafa
 Electrical Power and Machines Department
 Faculty of Engineering
 Ain Shams University
- 3. Prof. Dr. M.A.L.Badr Electrical Power and Machines Department Faculty of Engineering Ain Shams University

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Sciences in Electrical Engineering.

The work included in the thesis was carried out by the author at the department of Electrical Power and Machines, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Moaazz Shoaib AbdelSalam

Signature:

Date:

ACKNOWLEDGEMENTS

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

I would like to express my deep gratitude and appreciation to my supervisors Prof. Dr. / M.A.L.Badr and Dr. / Khaled Abdel Aty for their encouragement, suggestions, and patience during the period of this work.

The Department of Electrical power and machines has provided the support and information I have needed to produce and complete my thesis.

I want to thank my lovely family for their support, love, and their precious advice through my life.

List of Contents

List of Contents	11
List of Figures	vii
List of Tables	xi
Acronyms	xii
Abstract	1
1. Introduction	
1.1 Components of a Solar Electric System	3
1.1.1 Solar PhotoVoltaic Panels	3
1.1.2 Batteries	8
1.1.3 Solar Photovoltaic System Controller	9
1.1.4 Inverter	9
1.1.5 Electrical Load	10
1.2 The Configuration of Solar Power	12
1.2.1 Stand alone/Off Grid	12

1.2.2 Grid-connected	12
1.2.3 Grid-connected with power bank up (Grid Interactive)	13
1.2.4 Grid fall back	14
1.3 Grid failover	15
1.4 Thesis objectives	15
1.5 Thesis outlines	15
2. Survey of published literature	
2.1 Global Trend Towards Solar Energy	17
2.2 World Energy and Environmental Issues	18
2.3 Photovoltaic Power and Potential in the Deserts	21
2.4 The Origin of Solar Power	25
2.5 Solar PV Electricity Principle	26
2.5.1 Terminology	27
2.5.2 Expectations for Solar Electricity	28
2.6 Why a PV Electric System is Decided?	30
2.7 Cost-Justifying for Solar Cells	30
2.8 Solar Power and Wind Power	31
2.9 Fuel Cells	31
2.10 Solar Electricity and Environment	32
2.11 Solar Electricity Pros.	33

3. Maximum power point tracking techniques

3.1Maximum Power Point	
Tracking Concept and Necessity	35
3.2 Maximum Power Point	
Tracking Applied Techniques	39
3.2.1 Incremental conductance technique	40
3.2.2 Perturb & Observe Technique	42
3.2.3 Fractional Open Circuit Voltage	44
3.2.4 Fractional Short Circuit Current	45
3.2.5 Ripple Correlation Control	46
3.2.6 DC – Link Capacitor Droop Control	47
3.2.7 Load Current or Load Voltage Maximization	49
3.2.8 dP/dV or dP/dI Feedback Control	50
3.2.9 Current sweep	50
3.2.10 System Oscillation Technique	52
3.3 Summary	54
4. Artificial Intelligence Techniques Related to MPPT	
<u> </u>	
4.1 Artificial Intelligence Science	55
4.2 Artificial Intelligence Applied Techniques	55
4.2.1 Fuzzy Logic Optimization	55
4.2.2 Genetic Algorithm	56

4.2.3 Neural Networks	57
4.2.4 Hough Technique	60
4.2.5 Image Data Structures	61
4.2.6 Inductive Logic Programming	61
4.2.7 Particle Swarm Optimization	62
4.3 Summary	64
5. Proposed MPPT Techniques with Simulation Study Results	and
5.1 PV System with MPPT Block Diagram	65
5.2 Incremental Conductance Method	66
5.2.1 IncCond Simulation Model of Connected DC load.	66
5.2.2 Incremental Conductance Maximum Power Point tracking Plack Configuration	
Power Point tracking Block Configuration in Simulink.	67
5.2.3. Simulation Results	68
5.2.4 IncCond Simulation Model of Connected AC Load.	69
5.2.5 Simulation Results.	70
5.3 Fuzzy Logic Optimization Technique.	71
5.3.1 FLO Simulation Model of	
Connected DC load.	75

5.3.2 Fuzzy Logic Optimization Maximum	
Power Point Tracking Block	
Configuration in Simulink.	76
5.3.3 Simulation Results	77
5.3.4 FLO Simulation Model	
of Connected AC load.	78
5.3.5 Simulation Results	79
5.4 Differentiation of The Output DC	
Power for The Two Applied Techniques	80
6.Conclusions	
Publication	84
References	

List of Figures

Figure 1.1 Solar cell	4
Figure 1.2 PV cell equivalent circuit	5
Figure 1.3 A solar array assembled of four solar panels connected in series.	7
Figure 1.4 solar array assembled of four solar panels connected in parallel.	8
Figure 1.5 Simplified Solar electrical system.	11
Figure 2.1 Global energy consumption in the year 2015 .	17
Figure 2.2 Primary energy demand and CO_2 emission in the world.	19
Figure 2.3 Electricity generation and ${\it CO}_2$ emission by electricity generation .	19
Figure 2.4 Electricity generation in OECD and Non-OECD countries.	20
Figure 2.5 CO2 emission by electricity generation in OECD and Non-OECD countries.	21
Figure 2.6 Expected annual electricity generation at the PV power plants in world 6 deserts.	25
Figure 3.1 Current and voltage (I-V) characteristics of PV cell.	35
Figure 3.2 Power and voltage (P-V) characteristics of PV cell.	36
Figure 3.3 Combination of (I-V) & (P-V) characteristics of PV cell.	37

Figure 3.4 Irradiance change effect	
on (I-V) characteristics .	38
Figure 3.5 Temperature change effect on (I-V) characteristics.	38
Figure 3.6 (a) The effect of change in irradiance, and (b) The effect of temperature on the PV power.	39
Figure 3.7 Voltage power characteristics of PV module.	40
Figure 3.8 Flow chart of IncCond algorithm.	41
Figure 3.9 Perturb and observe method Technique Algorithm.	44
Figure 3.10 Dc-link voltage, power ripple and product of power and voltage ripple for different operating regions.	46
Figure 3.11 Ripple Correlation block diagram.	47
Figure 3.12 Topology of DC-link capacitor droop control.	48
Figure 3.13 Different load types; 1) voltage source,2) resistive, 3) resistive and voltage source, 4) and current source.	50
Figure 3.14 Block diagram of the system oscillation MPP tracking method.	53
Figure 3.15.Circuit diagram of a SEPIC converter.	53
Figure 4.1 Feed-forward neural network architecture.	59
Figure 4.2 Region adjacency graph.	61
Figure 4.3 : Illustration of the local minimizer xL* and the global minimizer x*.	64

Figure 5.1 PV system controlled with MPPT block diagram.	65
Figure 5.2 Simulink model of PV with MPPT connected to DC load.	67
Figure 5.3 Simulink model of IncCond MPPT technique algorithm.	68
Figure 5.4 Output power of solar panel connected to DC load using IncCond method.	69
Figure 5.5 Simulink model of PV with IncCond MPPT connected to AC load.	70
Figure 5.6 Output power of solar panel connected to AC load using IncCond method.	71
Figure 5.7 General diagram of FLO controller.	72
Figure 5.8 Input of FLO controller in voltage.	73
Figure 5.9 Input to FLO controller as change in power.	73
Figure 5.10 Output of the FLO controller as change in duty cycle.	73
Figure 5.11 Simulink model of PV with FLO MPPT connected to DC load.	76
Figure 5.12 Simulink model of FLO MPPT technique algorithm.	77
Figure 5.13 Output power of solar panel connected to DC load using FLO method.	77
Figure 5.14 Simulink model of PV with	79

Figure 5.15	Output power of solar panel	
	connected to AC load using	
	FLO technique.	80
Figure 5.16	- Output DC Power for IncCond &	
	FLO in the same chart.	80

List of Tables

Table 2.1 World deserts and solar energy potential	23
Table 5.1 Rules implemented in the fuzzy logic controller	75
Table 6.1 Comparison between the	83