

DESIGN OF SOIL STEEL COMPOSITE BRIDGES (SSCBS) AND ANALYSIS OF ASSOCIATED ARCHING ACTIONS

By

Islam Mamdouh Ezz El-dein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUBLIC WORKS

DESIGN OF SOIL STEEL COMPOSITE BRIDGES (SSCBS) AND ANALYSIS OF ASSOCIATED ARCHING **ACTIONS**

By Islam Mamdouh Ezz El-dein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

CIVIL ENGINEERING – PUBLIC WORKS

Under the Supervision of

Prof. Dr. Mohamed Abd Allah El**kholy**

Dr. Sherif Adel Akl

Professor of Geotechnical Engineering Public Works Faculty of Engineering, Cairo University

Associate Professor of Geotechnical Engineering, Public Works Faculty of Engineering, Cairo University

DESIGN OF SOIL STEEL COMPOSITE BRIDGES (SSCBS) AND ANALYSIS OF ASSOCIATED ARCHING ACTIONS

By **Islam Mamdouh Ezz El-dein**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUBLIC WORKS

Prof. Dr. Mohamed Abd allah ElKholy, Thesis Main Advisor

Dr. Sherif Adel Akl, Advisor

Prof. Dr. Mostafa Abd Elhamed Abukeifa, Internal Examiner

Approved by the

Prof. Dr. Khaled Mohamed ElZahaby, External Examiner Chairman of Housing & Building National Research Center, Egypt

Engineer's Name: Islam Mamdouh Ezz El-dein

Date of Birth:03/09/1993Nationality:Egyptian

E-mail: Islam.Mamdouh.Ezz@gmail.com

Phone: 00201226187054 **Address:** Maadi, Cairo, Egypt

Registration Date: 01/10/2016 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Civil Engineering-Public Works

Supervisors:

Prof. Dr. Mohamed Abd Allah El-kholy Associate Prof. Dr. Sherif Adel Akl

Examiners:

Prof. Mohamed Abdallah Elkholy (Thesis main advisor)

Dr. Sherif Adel Akl (Advisor)

Prof. Mostafa Abdelhamed Abukeifa (Internal examiner) Prof. Khaled Mohamed Elzahaby (External examiner) Chairman of Housing & Building National Research

Center, Egypt

Title of Thesis:

DESIGN OF SOIL STEEL COMPOSITE BRIDGES (SSCBS) AND ANALYSIS OF ASSOCIATED ARCHING ACTIONS

Key Words:

Flexible culvert; straining actions; arching effect; Pneusol; finite element modeling.

Summary:

This research mainly aims to study the shallow tunnels called "Soil Steel Composite Bridge (SSCB)" using flexible corrugated steel sheets. The SSCB has become a promising technique with economic benefits compared to other alternatives using different methods or materials. The analysis depends on the Skivarpsån SSCB in Sweden as a case study with field measurements of the vertical deflection and the straining actions. A numerical model of the case study is performed using the finite element program PLAXIS 2D to simulate the interaction between the tunnel and the surrounding backfill soil. The Swedish Design Method (SDM) is an empirical solution used to design the SSCBs with flexible metal cover. The results of the numerical model are compared with the field measurements and the SDM predictions to get the most accurate simulation to the field test. Embedding Pneusol material is a new technique used to reduce the developed straining actions in the SSCBs.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has
been submitted for a degree qualification at any other university or institute.
I further declare that I have appropriately acknowledged all sources used and have
cited them in the references section.

Name: date:
Signature:

Dedication

My dedication is to my dearest father (Eng. Mamdouh Ezz), my kindest mother, Sara my beautiful sister and Yomna my precious fiancée. They always support me in all aspects of my life. Therefore, I hope to make them always proud of me and make their dreams of me come true one day.

Eng. Islam Mamdouh Ezz

Acknowledgments

First at all, I thank ALLAH for all his blessings and giving me the ability and patience to reach what I am now.

I would like to express my gratefulness to prof. Dr. Mohamed El-kholy for his supervision, support, and guidance. His experience and knowledge always encourage me to work in a motivated environment and do my best in this research properly.

I would like to thank Dr. Sherif Akl for being my mentor and supervisor. His honest encouragement and support are the main reasons to accomplish my thesis. In addition, he is not only my supervisor as i consider him as a big brother for me. I learnt from him a lot not only on the scientific level but also the personal one. Hope to see him a great professor soon with successful career.

In addition, my grateful thanks to my professors from the Soil Mechanics Research Laboratory at Cairo University for their honest support: Prof. Abd El-Salam Salem, Prof. Hussein El Mamlouk, Prof. Mohamed Amer, Prof. Mostafa Abu Keifa, Prof. Ahmed Hisham, Prof. Hani Lotfy, Prof. Ashraf Kamal, Prof. Yasser Hegazi, Prof. Rami El Sherbiny, Dr. Omar Ezz El-dein, Dr. Mohamed Yehia, Dr. Manal Salem, Dr. Asmaa Moddather, Dr. Amr El Hakim and Dr. Shehab Wessa.

I would like also to thank my colleagues and brothers from the Soil Mechanics Research Laboratory: Eng. Mohamed Salah, Mohamed Kamal, Ahmed Abd El-Aziz, Ahmed Omar and Ahmed Saad for being helpful and supportive too. Hope them the best always in their career and life.

Finally, my deep thanks to all my friends and brothers who always being there for me: Tarek Mostafa, Islam Essam, Ahmed Yasser, Mohamed Raaft, Aswany, Ahmed Gomaa, Abd El-Moneam Mahmoud, Abd El-Rahman Naser, Abd El- Rahman Mohamed, Beshoy Samy, Ahmed Ragab, Ahmed Kamel, Mohamed Abo Bakr, Adnan Nada, Kamal, Zizo, Kareem Mousa, Hayel El-Naggar, Esraa Samir, Menna Allah Ayman, Asmaa Salah, Shimaa Maher, Yasmine Magdy and Aya Mostafa. Hope to see you all always happy and successful.

Table of Contents

DISCLAI	MER	I
DEDICA	ΓΙΟΝ	II
ACKNOV	VLEDGMENTS	III
TABLE O	OF CONTENTS	IV
	TABLES	
	FIGURES	
ABSTRA		
CHAPTE	R 1 : INTRODUCTION	1
1.1.	GENERAL	1
1.2.	OBJECTIVES	2
1.3.	THESIS STRUCTURE	2
СНАРТЕ	R 2 : LITERATURE REVIEW	4
2.1.	GENERAL	4
2.2.	SRTAINING ACTIONS IN TUNNEL STRUCTURES	4
2.3.	METHODS OF TUNNELING CONSTRUCTION	5
2.3.1.	Construction of Deep Tunnels	5
2.3.2.	Construction of Shallow Tunnels	9
2.4.	ARCHING PHENOMENON	12
2.4.1.	History of Arching	13
2.4.2.	Types of Arching	
2.4.3.	Arching Theories	
2.4.4.	Applications of Pneusol Material	
2.5.	SOIL STEEL COMPOSITE BRIDGES (SSCBS)	
2.5.1.	History of Flexible SSCBs	
2.5.2.	Characteristics of Flexible SSCBs	
2.5.3.	Corrugated Steel Profiles	
2.5.4. 2.5.5.	Soil Culvert Interaction (SCI) Method for Flexible Metal Culverts Results of Case Studies of SSCBs	
	R 3 : ASPECTS OF THE SWEDISH DESIDGN METHOD	
CHAITE	APPROACH	
3.1.	GENERAL AND HISTORY	39
3.2.	THE SDM FULL SCALE TEST (ENKÖPING SSCB)	40
3.2.1.	Sraining Actions Measurements in the Enköping SSCB	41
3.2.2.	Results of the Strain Gauges in the Enköping SSCB	43
3.3.	DESIGN REQUIREMENTS	45
3.3.1.	Profiles of SSCBs	
3.3.2.	Backfill Soil Material	
3.3.3.	Loads on the Flexible Culverts	
3.3.4.	The SDM Properties and Design Verifications	
3.4.	THE SDM CALCULATIONS	56
CHADTE	P 4 · FINITE ELEMENT MODEL INC (FEM)	70

4.1.	General	70
4.2.	PLAXIS 2D SOFTWARE	70
4.2.1.	PLAXIS 2D Model	70
4.2.2.	Model Elements	71
4.2.3.	Steel Plate Modeling	72
4.2.4.	Interface Elements	72
4.2.5.	Soil Models	73
4.2.6.	Compaction Efforts	75
4.2.7.	Construction Stages and Boundary Conditions	75
4.3.	Modeling of a Typical Problem of a Cut and Cover Shar	LLOW
	RECTANGULAR TUNNEL	76
4.4.	SSCB CASE STUDIES	79
4.5.	THE SKIVARPSÅN SSCB CASE STUDY	80
4.5.1.	The Geometry of the Skivarpsån SSCB and the Material Properties	80
4.5.2.	Modeling of the Traffic Loading on the Surface of Skivarpsån SSCB	82
СНАРТЕ	R 5 : RESULTS ANALYSIS AND SENSITIVITY STUDY	84
5.1.	General	84
5.2.	THE SKIVARPSÅN SSCB CASE STUDY RESULTS	
5.2.1.		
5.2.2.	6	
5.2.3.		
5.2.4.		
5.2.5.		
5.3.	THE PARAMETERS SENSITIVITY STUDY	
5.3.1.		
5.3.2.	•	
5.3.3.		
СНАРТЕ	CR 6 : APPLICATION OF PNEUSOL MATERIAL IN THE SSCBS.	105
6.1.	General	105
6.2.	SIMULATION OF SIDE PNEUSOL LINERS	
6.2.1.		
0.2.11	(Backfilling Process)	
6.2.2.		
	(Traffic Load Tests)	
6.3.	SIMULATION OF TOP AND SIDE PNEUSOL LINERS	
6.3.1.		
	(Backfilling Process)	
6.3.2.	Results of Using Top and Side Pneusol Pattern (3) in the Numerical M	Model
	(Traffic Load Tests)	112
6.4.	MONITORING ARCHING MECHANISM	114
СНАРТЕ	CR 7 : CONCLUSIONS AND RECOMMENDATIONS	116
7.1.	GENERAL SUMMARY	116
7.2.	CONCLUSION OF RESULTS ANALYSIS	116
7.3.	RECOMMENDATION FOR FUTURE STUDIES	
KEFEKE.	NCES	118

List of Tables

Table 2.1: The properties of a corrugated steel profile (type 381x140). Source: Design
of the SSCBs Handbook (Pettersson and Sundquist, 2014)34
Table 3.1: Summary of Enköping SSCB field measurements during backfilling
(Pettersson, 2007)44
Table 4.1: The soil cluster and the box culvert properties
Table 4.2: The comparison between Spangler and Handy method and the SDM method
in calculating the straining actions of Enköping and K & G SSCBs79
Table 4.3: The Skivarpsån geometry dimensions and the material properties of backfill
soil and steel plates81
Table 4.4: The Skivarpsån PLAXIS 2D model input parameters82
Table 5.1: The Skivarpsån Culvert straining actions from SDM, numerical model, and
the field measurements88
Table 5.2: Traffic load tests straining actions from the SDM, the numerical model, and
the field measurements91
Table 5.3: Factors of safety for Skivarpsån SSCB at different foundation soils96

List of Figures

Figure 2.1: Drill and blast tunneling method5
Figure 2.2: Double shielded rock TBM with grippers
Figure 2.3: The geometry and the configuration system of the SEM9
Figure 2.4: Stages of the cut and cover tunneling method
Figure 2.5: Stages of the cover and cut tunneling method
Figure 2.6: Distribution of the developed stresses in soil above the base of a yielding
mass. Source: A Literature Study of the Arching Effect (Tien, 1996)12
Figure 2.7: Active arching. (a) The deformation due to the pressure P_s when the
structure is more flexible than the surrounding soil. (b) The stress
distribution along planes AA or BB. Source: A Literature Study of the
Arching Effect (Tien, 1996)
Figure 2.8: Passive arching. (a) The deformation due to the pressure P_s when the
surrounding soils are more flexible than the structure. (b) The stress
distribution along planes AA or BB. Source: A Literature Study of the
Arching Effect (Tien, 1996)
Figure 2.9: Stresses distribution and deformation pattern around a flexible rectangular structure. Source: A Literature Study of the Arching Effect (Tien, 1996) .16
Figure 2.10: Terzaghi's experimental set-up. Source: (Terzaghi, 1936)
Figure 2.11: Results of the trap door experiment: Normalized vertical force on the trap
door versus its downward displacement. Source: (Terzaghi, 1936)17
Figure 2.12: Results of the trap door experiment: Vertical and horizontal stresses versus
soil height above the trap door. Source: (Terzaghi, 1936)
Figure 2.13: Yielding strip of soil with the actual sliding curves (ac and bd) and the
assumed sliding surfaces (ae and bf) in Terzaghi's arching theory.
Source: (Terzaghi, 1943)
Figure 2.14: The free body diagram for the forces acting on a slice of soil in the
yielding zone. Source: (Terzaghi, 1943)19
Figure 2.15: (a) Soil flow towards the tunnel when yielding occurs in the surrounding
soil; (eb_1) is the actual sliding curve and (e_1b_1) is the assumed vertical
sliding surface. (b) Distribution of the vertical stress above the tunnel
body. Source: (Terzaghi, 1943)
Figure 2.16: (a) Yielding scheme of a tunnel constructed at a great depth. (b)
Distribution of the vertical stress above the tunnel body. Source:
(Terzaghi, 1943)
Figure 2.17: Methods of conduits installation: (a) Ditch conduit method, (b) Positive
projecting conduit method, (c) Negative projecting conduit method, and (d) Imperfect ditch method of construction. Source: (Spangler and Handy,
1973)
Figure 2.18: Ditch conduit free body diagram. Source: (Spangler and Handy, 1973)24
Figure 2.19: Differential settlements of positive projecting conduits in both cases:
(a) Rigid conduits, and (b) Flexible conduits. Source: (Spangler and
Handy, 1973)
Figure 2.20: The coefficient of lateral earth pressure (K_k) used in the design of buried
conduits with in case of developing side friction. Source :(Iglesia et. al.,
1990)28

Figure 2.21: The embankment using Pneusol layer around Abou Muharik tunne Source: (Akl and Metwally, 2017)	
Figure 2.22: The percentage of the arching support versus the sand dunes heigh	
Source: (Akl and Metwally, 2017)	
Figure 2.23: Principles of the ring compression theory. Source: (ConnDOT Draina)	
Manual, 2000)	-
Figure 2.24: Enköping full-scale test. Source: (Pettersson, 2007)	
Figure 2.25: Culvert deformation due to vertical loads. Source: (ConnDOT Drainage Manual, 2000)	_
Figure 2.26: Dimensions of a corrugated steel profile type 381x140 (SuperCor). Source	e:
Design of the SSCBs Handbook (Pettersson and Sundquist, 2014)	
Figure 2.27: Single arch culvert shows the span (S) and the rise (R). Source: (Dunca 1978)	
Figure 2.28: Normal force coefficients K_{p1} , K_{p2} and K_{p3} . Source: (Duncan, 1978)	
Figure 2.29: Soil modulus of elasticity E_{soil} . Source: (Duncan, 1978)	
Figure 2.30: Moment coefficient K_{M1} due to backfill soil. Source: (Duncan, 1978)3	
Figure 2.31: Moment reduction coefficient R_B due to backfill soil. Source: (Dunca	
1978)	
Figure 2.32: Moment coefficient K_{M2} due to backfill soil and live load. Source	
(Duncan, 1978)	37
Figure 2.33: Moment coefficient K _{M3} and Moment reduction coefficient R _L due	to
backfill soil and live load. Source: (Duncan, 1978)	38
Figure 3.1: Enköping culvert profile. Source: Doctoral thesis (Pettersson, 2007)	10
Figure 3.2: Details of the cross section of the corrugated sheets and the strain gauge	es
positions. Source: Doctoral thesis (Pettersson, 2007)	11
Figure 3.3: Longitudinal section of the culvert structure with the sections A, B and	C.
Source: Doctoral thesis (Pettersson, 2007)	12
Figure 3.4: Transverse cross-section of the culvert structure with the backfill soil an	ıd
the vehicle positions in live load tests. Source: Doctoral thesis (Pettersso	n,
2007)	12
Figure 3.5: Crown vertical deflection and change of the culvert span versus the	
backfilling level (test series A: 1). Source: Doctoral thesis (Pettersso 2007)	
Figure 3.6: Readings of crown strain gauges A and B at section C versus the backfilling	ıg
level for a cover depth 1.5 m (test series A: 1). Source: Doctoral thes	_
(Pettersson, 2007)	
Figure 3.7: Bending moments at the crown and the quarter point versus the backfilling	ıg
level (test series A: 1). Source: Doctoral thesis (Pettersson, 2007)	_
Figure 3.8: Circular profile with constant radius (R). Source: Design of the SSCI	3s
Handbook (Pettersson and Sundquist, 2014)	
Figure 3.9: Single radius arch with constant top radius (R). The arch is usually founded	ed
on longitudinal concrete footings. Source: Design of the SSCBs Handboo	sk
(Pettersson and Sundquist, 2014)	16
Figure 3.10: (a) Pipe arch with three radii: bottom radius (R _b), top radius (R _t) as	nd
corner radius (R _c). Where R _b / R _c \leq 10 and R _t / R _c \leq 5.5, (b) Pipe arch wi	
four radii: bottom radius (R _b), top radius (R _t), side radius (R _s) and corn	er
radius (R _c). Where R _b / R _c \leq 10, R _s / R _t \leq 2.0 and R _t / R _c \leq 5.5. Source	
Design of the SSCBs Handbook (Pettersson and Sundquist, 2014)	
Figure 3.11: Vertical ellipse arch, where R_b / $R_s \approx 0.8$ and R_t / $R_s \approx 0$	Ω
and aspect ratio $1.0 < 2H/D \le 1.2$. Source: Design of the SSCBs Handboo	
(Pettersson and Sundquist, 2014)	
(* ***********************************	

Figure 3.12: Horizontal ellipse arch, where $R_b / R_s \le 4.0$ and $R_t / R_s \le 4.0$. Source:
Design of the SSCBs Handbook (Pettersson and Sundquist, 2014)47
Figure 3.13: Box culvert profile, where $R_t / R_s \le 12$. Source: Design of the SSCBs
Handbook (Pettersson and Sundquist, 2014)47
Figure 3.14: The distribution of the important backfill soil volumes surrounding the
culvert body. Source: Design of the SSCBs Handbook (Pettersson and
Sundquist, 2014)48
Figure 3.15: Load model 1 (LM1) according to Eurocode. Source: Design of the SSCBs
Handbook (Pettersson and Sundquist, 2014)50
Figure 3.16: An example of the vertical pressure distribution at depth 1 m for load
model 1 (LM1). Source: Design of the SSCBs Handbook (Pettersson and
Sundquist, 2014)
Figure 3.17: Equivalent line load and vertical crown pressure due to LM151
Figure 3.18: The geometry of a culvert with a railway. Source: Design of the SSCBs
Handbook (Pettersson and Sundquist, 2014)51
Figure 3.19: Railway equivalent line loads for single and double tracks due to axle
loads of 330KN. Source: Design of the SSCBs Handbook (Pettersson and
Sundquist, 2014)
Figure 3.20: Fatigue load model 3 (FLM3) with axle load 120 kN. Source: EN 1991-2
53
Figure 3.21: Equivalent line load and vertical crown pressure due to FLM353
Figure 3.22: The fatigue test on a corrugated steel plate specimen in the KTH Structural
Engineering and Bridges laboratory. Source: (Pettersson, 2012)56
Figure 3.23: Comparison between the soil modulus E _{soil,k} using method (A) and method
(B) at different values of RP%. Source: Design of the SSCBs Handbook
(Pettersson and Sundquist, 2014)58
Figure 3.24: The arching coefficient S _{ar} versus the ratio, h _c /D, using different friction
angles. Source: Design of the SSCBs Handbook (Pettersson and Sundquist,
2014)60
Figure 3.25: The bending moment distribution in the culvert body during backfilling
stages: a) when the backfill soil reaches the crown level (maximum upward
moment), b) when the backfill soil is progressed above the crown level
(reduction in the upward moment). Source: Design of the SSCBs
Handbook (Pettersson and Sundquist, 2014)63
Figure 3.26: The developed bending moment when the cover height is very large that
causing a change in the bending moment direction. Source: Design of the
SSCBs Handbook (Pettersson and Sundquist, 2014)
Figure 3.27: The relation between the factors f_1 and f_3 with the ratio of the height to the
span (H/D). Source: Design of the SSCBs Handbook (Pettersson and
Sundquist, 2014)64
Figure 3.28: The relation between the factors $f_{2, \text{ cover}}$ and $f_{2, \text{ surr}}$ with the stiffness
parameter λ_f . Source: Design of the SSCBs Handbook (Pettersson and
Sundquist, 2014)65
Figure 3.29: The bending moment distribution due to the traffic loads: a) when the
traffic load above the crown, b) when the traffic load away from the crown
to develop the largest moment at the sides. Source: Design of the SSCBs
Handbook (Pettersson and Sundquist, 2014)
Figure 3.30: The bending moment distribution in the box culvert corresponding to the
traffic loads. Source: Design of the SSCBs Handbook (Pettersson and
<u> </u>
Sundquist, 2014)66

Figure 3.31: The relation between the factors f_4^{11} and f_4^{11} with the stiffness number λ_1
when calculating the bending moments due to the traffic loads. Source:
Design of the SSCBs Handbook (Pettersson and Sundquist, 2014)66
Figure 3.32: The relation between the factor f_4^{III} with the ratio of $h_{c,red}/D$ when
calculating the bending moments due to the traffic loads. Source: Design of
the SSCBs Handbook (Pettersson and Sundquist, 2014)67
Figure 3.33: The relation between the factor f_4^{IV} with the ratio of R_t / R_s when
calculating the bending moments due to the traffic loads. Source: Design of
the SSCBs Handbook (Pettersson and Sundquist, 2014)67
Figure 3.34: Flowchart of the SDM design method
Figure 4.1: Example of axisymmetric problem (right side) and plane strain problem
(left side). Source: PLAXIS 2D manual
Figure 4.2: Position of stress points and nodes in soil elements. Source: PLAXIS 2D
manual
Figure 4.3: Position of stress points and nodes in a 3-node and a 5-node plate element.
Source: PLAXIS 2D manual
Figure 4.4: Distribution of stress points and nodes in interface elements and their
connection to soil elements. Source: PLAXIS 2D manual
Figure 4.5: Basic principle of an elastic-plastic model. Source: PLAXIS 2D manual73
Figure 4.6: Stress circles at yield, one touches Mohr-Coulomb failure envelop. Source:
PLAXIS 2D manual
Figure 4.7: Mohr-Coulomb yield surface in principle stress space (c= 0). Source:
PLAXIS 2D manual
Figure 4.8: Hyperbolic stress-strain relation in primary loading for a standard drained
triaxial test. Source: PLAXIS 2D manual75
Figure 4.9: (a) The box culvert geometry and (b) the deformed mesh in PLAXIS 2D
model77
Figure 4.10: The straining actions in the box culvert PLAXIS 2D model:(a) The thrust
in the culvert, (b) the bending moment in the culvert77
Figure 4.11: The results of the straining actions around the culvert body in PLAXIS 2D
and CANDE programs: (a) The sections around the culvert body where the
straining actions are calculated, (b) The thrust around the culvert, (c) The
bending moments around the culvert78
Figure 4.12: K & G culvert profile. Source: (Klöppel and Glock, 1970)79
Figure 4.13: Geometry and dimensions of the Skivarpsån composite bridge. Source:
(Flener, 2004)80
Figure 4.14: Examples from the construction stages in the PLAXIS 2D numerical
model82
Figure 4.15: Traffic load tests according to different positions of the first axle to the
crown. Source: (Flener, 2004)83
Figure 4.16: The locomotive RC4 load distribution for test no.5. Source: (Amer, 2012)
Figure 5.1: Top view of the culvert body with the locations of the strain gauges. Source:
(Flener 2003)85
Figure 5.2: The vertical deformation shape in the Skivarpsån structure plate in the
PLAXIS 2D model when the backfill at crown level
Figure 5.3: Crown deflection versus the height of backfill soil from field measurements
and PLAXIS 2D numerical model
Figure 5.4: The thrust shape in the Skivarpsån structure plate in the PLAXIS 2D model
at the end of backfilling
Figure 5.5: Crown thrust versus the height of backfill soil from field measurements and
PLAXIS 2D numerical model87

Figure 5.6: The bending moment shape in the Skivarpsån structure plate in the PLAXIS 2D model when the backfill at crown level
Figure 5.7: Crown bending moment versus the height of backfill soil from field
measurements and PLAXIS 2D numerical model
Figure 5.9: Vertical deflection at different traffic load tests from the PLAXIS 2D model and the field measurements
Figure 5.10: The thrust at different traffic load tests from the PLAXIS 2D model and the field measurements
Figure 5.11: The bending moment at different traffic load tests from the PLAXIS 2D model and the field measurements90
Figure 5.12: Crown deflection versus the height of backfill soil at different interface values R _{in} 92
Figure 5.13: Crown thrust versus the height of backfill soil at different interface values R _{in} 92
Figure 5.14: Crown bending moment versus the height of backfill soil at different interface values R _{in} 93
Figure 5.15: Crown deflection versus the height of backfill soil at variable soil stiffness modulus E94
Figure 5.16: Crown thrust versus the height of backfill soil at variable soil stiffness modulus E94
Figure 5.17: Crown bending moment versus the height of backfill soil at variable soil stiffness modulus E95
Figure 5.18: Crown deflection versus the height of backfill soil using different foundation soils95
Figure 5.19: Crown thrust versus the height of backfill soil using different foundation soils
Figure 5.20: Crown bending moment versus the height of backfill soil using different foundation soils
Figure 5.21: Crown deflection versus the height of backfill soil at different Passion's Ratios v
Figure 5.22: Crown thrust versus the height of backfill soil at different Passion's Ratios 0
Figure 5.23: Crown bending moment versus the height of backfill soil at different Passion's Ratios v
Figure 5.24: Crown deflection versus the height of backfill soil at different friction angle values φ
Figure 5.25: Crown thrust versus the height of backfill soil at different friction angle values φ
Figure 5.26: Crown bending moment versus the height of backfill soil at different friction angle values φ
Figure 5.28: Crown deflection versus the height of backfill soil at different constant
compaction loads
compaction loads
constant compaction loads
Figure 5.31: Crown deflection versus the height of backfill soil at variable compaction load