

Ain Shams University Faculty of Engineering Department of Structural Engineering

Productivity of Reinforcement work labors in Residential buildings in Egypt

A THESIS

Submitted in partial fulfillment for the requirements of the degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL ENGINEERING DEPARTMENT)

Submitted by

Eng. Sara Muhammed El-Seufy

B.Sc. in Civil Engineering, Structural Engineering Department, 2014 Faculty of Engineering, El-Sherouk Academy

Supervised by

Prof. Dr. Avman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Structural Engineering Department, Faculty of Engineering Ain Shams University, Egypt

Dr. Mohamed Badawy Abd El-Megeed

Assistant professor, Structural Engineering Department Faculty of Engineering, Ain Shams University, Egypt

Dr. Khaled Ahmed Al Naas

Project Manager Consolidated Contractors Group (CCC), Qatar

> Faculty of Engineering Ain Shams University Cairo, 2019

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name: Sara Muhammed Ramadan Muhammed El-Seufy

Thesis: Productivity of Reinforcement work labors in

Residential building in Egypt.

Degree: Master of Science in Civil Engineering (Structural)

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Manal Sayed Abdelhamid Professor of construction projects management Director of Construction and Project Management institute The National Housing and Building Research Center, Egypt	••••••
Dr. Mohamed Ahmed El Mikawi Associate Professor, structural Engineering Department, Faculty of Engineering, Ain-Shams University, Egypt	
Prof. Dr. Ayman Hussein Hosny Khalil Professor of Reinforced Concrete Structures Structural Engineering Department, Faculty of Engineering Ain-Shams University, Egypt	•••••••••••••••••••••••••••••••••••••••

Date: 30/March/2019

STATEMENT

This Thesis is submitted to Faculty of Engineering, Ain Shams University, Cairo-Egypt, in Partial fulfillment of the requirements for the Degree of Master of Science in Structural Engineering.

The work included in this thesis was carried out by the author at the Structural Engineering Department, Faculty of Engineering, Ain Shams University, Cairo-Egypt, From February 2016 to January 2019.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Sara Muhammed El-Seufy

Signature: Sara Muhammed El-Seufy

Date: / / 2019

CURRICULUM VITAE

Name: Sara Muhammed Ramadan El-Seufy

Date of birth: 2nd, February 1992

Place of birth: Suez, Egypt

Last Academic Degree: B.Sc. in Civil Engineering

Field of specialization: Structural Engineering Department

University: El-Sherouk Academy

Date of Graduate: July 2014

Current Job: Teaching Assistant, Credit-hours system, Ain

Shams University

Signature: Sara Muhammed El-Seufy

Date: / / 2019

ACKNOWLEDGEMENT

First of all, I thank GOD who guided and helped me to finish this work in the proper shape.

I would like to express my gratitude and respect to my supervisors and advisors, **Prof. Ayman Hussein** and **Dr. Mohamed Badawy**, for their support and help throughout this research from the commencement of the research to its conclusion. Their patience and kindness will never be forgotten. I have enjoyed working with them and appreciate the support and opportunities they provided. Working with **Prof. Ayman Hussein** and **Dr. Mohamed Badawy** has been a great experience.

I deeply thank my mother, father, sister, brother and my family for their continuous support, encouragements, effort and love.

I extend my sincere gratitude to all the research study's respondents for their valuable input and suggestions. Also, I thank the faculty and staff of Civil Engineering Department for preparing me to achieve my master's degree and to succeed in future endeavors. Also, Special thank for **Dr. Khaled El-naas** for his support and help throughout this research.

Finally, I would like to thank friends for their support and encouragement during the preparation of this thesis.

Sara Muhammed El-Seufy

ABSTRACT

Production rates are considered an essential aspect of the construction industry because it is the indicators of the productivity efficiency of construction sector. Hence, the efficient management, which considers labors as the most important factor, leads to higher productivity and achieves the goal with lower cost, time, and high quality. However, there is a gap in identifying factors affecting rebar workers. Therefore, this study tries to bridge this gap by developing a neural network model for estimating rebar labor's production rates. Thus, a questionnaire has been distributed to a group of consultants and contractors and statistical software program (IBM SPSS) has been used to statistically analyze the collected data. Mainly, to show the effect of different analytical methods on the ranking of the outputs. The first method depends on applying project management professional (PMP) matrix method, while the second method depends on the probability and the impact to validate the results of the first method. The results indicate that "project type" is the most important factor affecting labor productivity. Also, the application of factors has led to a model that can be used in estimating rebar's labor production rate. Reliable values have been successfully predicted by Artificial Neural Network (ANN). Additionally, the research presents a software program, which is used to measure production rate (Output) based on the data provided in the form of factors affecting the rebar labor (Input). This helps to measure productivity growth in a low-cost residential building in a later work. Moreover, it supports fundamentals building by predicting productivity of rebar labor, to establish a database for executed projects in the future to develop productivity estimation process.

<u>Keyword:</u> Artificial Neural Network (ANN); Influencing factors; Production Rate; Rebar workers; Regression; Relative Importance Index

CONTENTS

1. INTRODUCTION	1
1.1 Overview	1
1.2 Construction Productivity	1
1.3 ANN Modeling	2
1.4 Problem Statement	3
1.5 Research Aim	4
1.6 Research Objectives	5
1.7 Limitation	5
1.8 Research Scope	5
1.9 Research Contribution	5
1.10 Research Methodology	6
1.11 Thesis Outline	7
2. LITERATURE REVIEW	9
2.1 Overview	9
2.2 Terminology	9
2.2.1 Definitions Related to Productivity in construction industry	9
2.2.2 Definitions of steel reinforcement labor	11
2.2.3 Definitions of rebars work	13
2.2.4 Definitions of low-cost residential building	15
2.3 Review of Productivity from Previous Study	16
2.3.1 Measuring Productivity	16
2.3.2 Improving construction productivity	18
2.3.3 Factors affecting construction labor productivity	20
2.3.4 Analysis of construction productivity	34
2.3.5 A Study on Productivity	35
2.3.6 Pervious studies of productivity	37
2.4 Review of Artificial neural networks from previous studies	38
2.4.1 Overview	38

2.4.2. Artificial neural networks definitions and feature	39
2.4.3. How it works	39
2.4.4. Mechanism of ANNs	40
2.4.5. Why to Use Artificial neural networks	40
2.4.6. Previous studies about ANN in the Construction industry	42
2.5 Importance of This study	43
2.6 Chapter Conclusions	44
3. METHODOLOGY	45
3.1 Overview	45
3.2 Methodology	46
3.3 Survey Planning	47
3.4 Consideration of the survey	47
3.5 Organization of the Questionnaire	48
3.6 Questionnaire Design.	48
3.7 Identification of significant factors affecting productivity in Egypt	50
3.7.1 Special Factor affecting rebar's labor	50
3.7.2 General Factors	51
3.8 Data measurement	53
3.8.1 Relative importance index Technique	54
3.8.2 Importance Index Technique	54
3.9 Questionnaire Distributions	55
3.10 Sample Size	56
3.11 Statistical Validity of the Questionnaire	56
3.11.1 Reliability Analysis	56
3.11.2 Factor Analysis	56
3.11.3 Regression Analysis	57
3.12 Model development phase	57
3.12.1 Data Collection	57
3.12.2 Data Analysis	57
3 12 3 Model Development	58

3.13 Conclusion and recommendation phase	59
3.14 Chapter (3) Conclusion	59
4. ANALYSIS AND DISCUSSION OF RESULT	61
4.1 Overview.	61
4.2 Data Collected from the Web Survey	61
4.3 Measurement of Data Collected from the Web Survey	62
4.4 Analysis Method	62
4.5 Size of Organization	63
4.6 Number of Projects per Year	63
4.7 Type of Construction Projects	63
4.8 Job Title	63
4.9 Project duration	64
4.10 Number of floors	64
4.11 Slab thickness	64
4.12 Working hours per day	64
4.13 Ranking Factor	65
4.13.1 Relative Importance Index Technique	65
4.13.2 Importance Index Technique.	67
4.14 Comparison Analysis between the two methods	69
4.15 Questionnaire Analysis by sing SPSS	70
4.15.1 Reliability Analysis	70
4.15.2 Factor Analysis (KMO and Bartlett's Test)	71
4.15.3 Multiple Regression Analysis	72
4.15.4 The Hypothesis	73
4.16 Comparative Analysis of Current Study with past Studied	74
4.17 Labor Productivity Measurement	75
4.18 Model Selection	76
5. MODEL DEVELOPMENT AND SOFTWARE PROGRAM	77
5.1 Overview	77
5.2 Selection of the Neural Network Simulation Software	78

5.3 Structure Design	78
5.4 Model Implementation	79
5.4.1 Create data File	80
5.4.2 Prepare data	80
5.4.3 Normalizing data	83
5.4.4 Build initial networks	84
5.4.5 Training Models and Testing	86
5.5 Model Results	87
5.6 Results Analysis	88
5.7 Developed Software Program Using ANN	91
5.8 Comparison with previous studies	92
5.9 Chapter Conclusions	92
6. MODEL VALIDATION AND CASE STUDY	93
6.1 Model Validation	93
6.2 Basic Information. of Case Study	93
6.3 Issues with data collection	94
6.4 Factors affecting on rebar's labor	94
6.5 Data management	95
6.6 Analyzing and discussion.	101
6.7 Case Study Conclusions	102
7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	103
7.1 Summary	103
7.2 Conclusions	103
7.3 Recommendations	105
7.4 Future Research	106
APPENDICES	107
APPENDIX A (Factors affecting labor productivity)	108
APPENDIX B (Production rates)	109
REFERENCES	110

LIST OF FIGURES

Figure 2.1 clarifying basic processes covered by installation of rebar	11
Figure 3.1 Research main activities/methodology	46
Figure 3.2 Flowchart explains a methodology	60
Figure 4.1 Collected real data for Input and Output	75
Figure 5.1 The flow chart for model structure	79
Figure 5.2 Tag column of data as a desired parameter	81
Figure 5.3 explain how the data was distributed into sets	82
Figure 5.4 Normalization limits	83
Figure 5.5 Determine the number of hidden layers	84
Figure 5.6 Output Data of Model	85
Figure 5.7 Supervised learning control	85
Figure 5.8 The MLP development model of ANN	87
Figure 5.9 Comparison chart between actual and predicted MSE values	90
Figure 5.10 Desired output and actual network output for test set	90
Figure 5.11 A software program using in calculate expected P.R	91
Figure 6.1 Shows variation for each element for building unit no. (1)	96
Figure 6.2 Shows variation for each element for building unit no. (2)	97
Figure 6.3 Shows variation for each element for building unit no. (3)	99
Figure 6.4 Shows variation for each element for building unit no. (4)	100

LIST OF TABLES

Table 3.1 Questionnaire form	. 53
Table 3.2 PMP Matrix	53
Table 4.1 Statistical Data of Questionnaires Sent and Received	.61
Table 4.2 Ordinal Scale Used for Data Measurement	62
Table 4.3 Profession of Respondent Source	63
Table 4.4 Respondents years of experience	.64
Table 4.5 Frequency and percent of duration for projects	64
Table 4.6 (RII) for Reinforcement labour's factor	65
Table 4.7 (RII) for General labour's factor	66
Table 4.8 Importance Index for Reinforcement labor's Factor	68
Table 4.9 Importance Index for General labor's Factor	.68
Table 4.10 The reliability analysis	71
Table 4.11 The Eigen value (KMO and Bartlett's Test)	71
Table 4.12 The hypothesis tests	73
Table 4.13 Comparison with previous studies	.74
Table 5.1 Inputs/Output encoding	80
Table 5.2 Data of MLP model structure	88
Table 5.3 Results of neural network model at three phases	89
Table 6.1 Data of each building unit	.93
Table 6.2 Comparison between actual P.R & predicted P.R for unit no.(1)	.95
Table 6.3 Comparison between actual P.R & predicted P.R for unit no.(2)	.97
Table 6.4 Comparison between actual P.R & predicted P.R for unit no.(3)	.98
Table 6.5 Comparison between actual P.R & predicted P.R for unit no.(4)1	100

ABBREVIATIONS

(AI): Artificial intelligence

(ANN): Artificial neural networks

(B. F. Skinner): Positive Reinforcement Skinner Theory

(CII): Construction Industry Institute

(CPIM): Cost and Productivity Indicator Model

(F.I.): Frequency Index

(GFF): Generalized Feed Forward

(H0): Null Hypothesis

(H1): Research Hypothesis

(IMPI): Importance Index

(L-C-Theory): Learning Curve Theory

(LPV): labors productivity variation

(LWSM): Labor Working Status Monitoring

(M&E Services): mechanical and electrical Services

(MLP): Multilayer perceptron

(MSE): Mean Square Error

(P.R): Production Rate

(PFP): Partial factor productivity

(PMP): Project Management Professional

(QEPSD): Quantitative Engineering Project Scope Definition

(RFI): Ranking factor Impact

(RII): Relative Importance Index

(S.I.): Severity Index

(TLS): Technical and Logistics Solutions

(TPF): Total factor productivity

(PIIS): Process Improvement Initiatives

(PLP): Project level Productivity

(%): Percentage

CHAPTER (1) INTRODUCTION

1.1 OVERVIEW: -

Numerous studies on labor productivity in the construction industry have been conducted in the past. A series of these studies were designed to calculate the effect of factors affecting productivity. But the others were studied to make standard calculations for the impact of these factors on estimation process for productivity on the construction project, during the planning and the scheduling phases. Previous studies, there is the great difficulty in estimating the impact of these factors. At the present, there are many internationally accepted standards that are used to measure the lack of labor productivity in the construction industry. This lack of methods of measuring this impact is due to the need to strengthen assessments that can measure the factors affecting productivity in the construction sector. This is presented to be the subject of this research.

To achieve a good productivity, it is necessary to achieve detailed labor productivity and the actual cost of labor. Because many factors have different variables that affected productivity levels. For a project, productivity, cost, quality and time are the most important criteria affecting the efficiency of any project. In order to achieve better productivity in any construction site, the project management must include several requirements such as: the skills of learning and training, method of work, personal health, motivational factors, type of tools, machinery and equipment required, the materials required on site, personal skills, the amount of work, the quality of work, work location, type of work, and supervisory staff.

1.2 CONSTRUCTION PRODUCTIVITY: -

The construction sector is one of the most extensive industry, that affected the economy of any nation. In addition, productivity is one of the most important influential factors that contribute significantly to the economy of any country. Therefore, it is essential to identify the factors that directly affect the

CHAPTER (1)

construction sector. Accordingly, actions should be taken to improve these factors to achieve low cost, less time, and high quality. Therefore, various studies have shed the light on the development of the production rate to ensure cost reduction in construction projects. Mainly because labor's productivity is considered as one of the most critical factors that affect the physical progress of any construction project.

The estimate of labor productivity in the construction sector must be well documented with the influence of many factors such as: structural planning, scheduling and estimation phases. The planning and scheduling phases are important steps to reach to maximize productivity, predict the activity duration, and achieve to the lowest cost of working in a shorter duration of the project. But the estimation phase is used to predict labor costs. If the estimate is too low, the company may lose funds during the project implementation. On the other hand, if the estimate is high, the company may lose the contract because of the excessive price.

Recently, the prediction of labor productivity using artificial intelligence has become an emerging area for many researches. Artificial intelligence (AI) such as artificial neural networks (ANN) is a promising tool to achieve better estimates using historical data. Many researchers discussed the potential applications of neural networks in construction industry in recent years (Salem, 2006).

1.3 ANN MODELING: -

To achieve the desired productivity in any building project in general, it was important to have good control over factors that affect productivity and contribute to production rate such as labor, material, and equipment. To achieve the goal effectively it was important to determine the relationship between productions rates (output) and related productivity factors (input).

The current traditional activities for estimating, measuring and improving productivity depended on several factors that used in predicting production rates, which include personal arbitration by the estimator, on-site productivity