

Association of Vitamin D Deficiency in Pregnancy and Risk of Preterm Labor

Thesis

Submitted for Partial Fulfillment of the Master Degree in Obstetrics & Gynecology

By

Marwa Ahmed Mahmoud Ahmed El-Kateb

M.B.B.Ch., Faculty of Medicine – Alexandria University (2012) Resident at Dar Ismael Hospital– Health Ministry

Under Supervision of Professor Doctor/ Mohamed Aly Mohamed Ibrahim

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Doctor Rehab Mohamed Abdel-Rahman

Lecturer of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

First of all, thanks to **Allah** whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards **Professor Doctor Mohamed Aly Mohamed Ibrahim,** Professor of Obstetrics and Gynecology, Faculty of Medicine-Ain Shams University for his continuous encouragement, facilities he provided to me to easy perform the study, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I would like to express my deepest appreciation, respect and thanks to **Doctor Rehab Mohamed** ofAbdel Rahman. Lecturer Obstetrics and Faculty of Medicine-Ain Shams Gynecology, University, for her continuous guide in all aspects of beside his great science, knowledge life and information, she was cooperative and supportive.

Marua Ahmed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vi
Introduction	1
Aim of the Study	5
Review of Literature	
Vitamin D	6
Preterm Labor	25
Vitamin D and PTL	61
Patients and Methods	67
Results	75
Discussion	80
Summary	85
Conclusion and Recommendations	88
References	89
Appendix	118
Arabic Summary	

List of Abbreviations

Abb.	Full term
95(OH) VD	25 hymdoyy vitomin D
	25 hyrdoxy vitamin D
	Adrenocorticotropic hormone
AI	-
BMI	· ·
	Bacterial vaginosis
CAMP	Cathelicidin antimicrobial protein
CI	Confidence interval
CRH	Corticotropin releasing hormone
CRP	C reactive protein
CS	Cesarean section
CYP27A1	Cytochrome P27A1
CYP27B1	Cytochrome P27B1
DBP	Vitamin D binding protein
DCs	Dendiritic cells
DHEAS	Dehyrdoepiandrosterone sulphate
DNA	Double stranded nucleic acid
DRG	A multinational specialty medical equipment
	and diagnostics manufacturer and distributor.
DV	Daily values
E1	Estrone
E2	Estradiol
E3	Estriol
ELBW	Extremely low birth weight
ELISA	Enzyme-linked immunosorbent asssay
ER	Estrogen receptor
EUROPOP	European Programme of Occupational Risks and Pregnancy Outcome

List of Abbreviations Cont...

Abb.	Full term
FDA	US Food and Drug Adminestration
	Fibroblast growth factor 23
GA	
	Group B streptococci
	Granulocyte colony stimulating factor
	Gestational diabetes mellitus
hCAP18	. Human cathelicidin antimicrobial peptide
	. Human chorionic gonadotropin
HIE	Hypoxic ischemic encephalopathy
HPA	. Hypothalamic pituitary adrenal
HPLC-MS	High performance liquid chromatography
	mass spectrometry
	. Highly significant
IL-1	Interleukin 1
IOM	Institute of medicine
IQR	Iterquatrile range
IU	International unit
IUFD	Intrauterine foetal death
LBW	Low birth weight
MMPs	. Matrix metallo proteinases
mRNA	Messenger ribo nucleic acid
NCC	Nested case control study
ng/ml	Nano gram/mille
nM	Nanomolar= 10 ⁻⁹ mol/L
nmol/L	Nano moll/liter
NS	Non significant
OR	

List of Abbreviations Cont...

Abb.	Full term
PAMG-1	Placental alpha macroglobulin-1
	Pregnancy adverse outcomes
	Protease-activated receptors
	Preterm premature rupture of membranes
	Progesterone receptor
	Premature rupture of membranes
PTB	
PTD	Preterm delivery
	Parathyroid hormone
PTL	Preterm labor
RCOG	Royal College of Obstetricians and
	Gynaecologists
RCT	Randomized controlled trials
RDA	Recommended daily allowance
RXR	Retinoid x-receptor
S	Significant
SD	Standard deviation
SGA	Small for gestational age
SIDS	Sudden infant death syndrome
sPTB	Spontanous preterm birth
STIs	Sexually transmitted infections
TAT	Thrombin anti thrombin complex
TNF α	Tumor necrosis factor alpha
TVUS	Transvaginal ultrasound
UK	. United Kingdom
UL	. Upper intake level
USA	United States of America

List of Abbreviations Cont...

Abb.	Full term
USDA	United States Department of Agriculture
UV	
UVB	. Ultraviolet B waves
VD	. Vitamin D
VDD	. Vitamin D deficiency
VDRs	. Vitamin D receptors
VLBW	. Very low birth weight
WHO	. World health organization

List of Tables

Table No.	Title	Page No.
Table (1):	Vitamin D levels and health status	18
Table (2):	Daily values of food sources for vitamin	D21
Table (3):	Recommended daily allowance of VD	22
Table (4):	Comparison of mean value of three me of blood vitamin D estimation	
Table (5):	Risk of recurrent preterm birth in a pregnancy.	
Table (6):	Risk Factors for PTB.	32
Table (7):	Prevalence of VD insufficiency and across different countries	
Table (8):	Data of Group I (Preterm) & Group II term)	
Table (9):	Comparison between Group I (Preter Group II (Full term) as Regard serus level (25(OH)D)	m VD
Table (10):	Correlation between GA at Delivery ar level.	
Table (11):	Prevelance of Vitamin D deficient insufficiency in Group I (Preterm) & II (Fullterm)	Group

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Isoprene	6
Figure (2):	Vitamin D Metabolism	
Figure (3):	Phases of parturition as a conting pregnancy	nuum of
Figure (4):	Overview of major pathways lear preterm labor and delivery	ading to
Figure (5):	Transvaginal ultrasonography of demonstrating funneling of the amembrane protruding into the int (long arrow) and shortened cervica of 1.5 cm (short arrow)	amniotic ernal os al length
Figure (6):	Ultrasound of normal cervix wit thickness of anterior and precervical lips	osterior
Figure (7):	Stat Faxâ,,¢® 2100 Microplate Rea	
Figure (8):	Kits of vitamin D	70
Figure (9):	Comparison between Group I (Pre Group II (Full term) as Regard VD	
Figure (10):	Correlation between GA at Deliv VD level	•
Figure (11):	Prevelance of Vitamin D defici insufficiency in Group I (Pret Group II (Fullterm).	erm) &

INTRODUCTION

reterm labor continues to be the leading cause of neonatal morbidity. Prematurity accounts for 50-75% of the perinatal mortality. Preterm labor is defined as onset of regular uterine contractions associated with cervical changes starting before 37 completed weeks of gestation, with or without intact fetal membranes (Fernandes et al., 2015).

Estimates of preterm birth rates range from 5-10% in developed countries to 25% in developing countries (Beck et al., 2010).

The pathogenesis of preterm labor is not well understood, and it is often not clear whether preterm labor represents early idiopathic activation of the normal labor process or results from a pathogenic mechanism (Goldenberg et al., 2008).

Thirty to forty percent of all cases of preterm birth are due to elective delivery for a maternal or a fetal complication. The remaining 60-70% of preterm births is likely due to subclinical infective / inflammatory processes, cervical dysfunction, multiple gestations, idiopathic and possible social, nutritional, and environmental interactions (Lumley, 2003).

Wide spectrum of causes and demographic factors has been implicated in preterm birth. These can be categorized into four groups (Sangkom et al., 2015):

- 1. Medical and obstetric complications: there associations with placental hemorrhage and hypertensive disorders in about one-third of cases.
- 2. Lifestyle factors: there is an association with alcohol abuse, low maternal age, and occupational factors.
- 3. Amniotic fluid infection caused by a variety of micro-organisms located in the genital approximately one-third of preterm births are associated with chorioamniotic infection.
- 4. Asymptomatic cervical dilatation. (Sangkom et al., 2015).

Infections are often the most common risk factors of preterm births. Genital tract infections account for about 25-40% of preterm deliveries. Women with Chlamvdia trachomatis, Gardnerella vaginalis, Trichomonas vaginalis, Neisseria gonorrhoeae, Treponema pallidum, have a higher rate of preterm births (Jasovic-Siveska, 2014).

A history of a preterm delivery is one of the most significant risk factors. The recurrence risk factor of preterm birth in women with a history of preterm delivery ranges from 17% to 40% and appears to depend on the number of prior preterm deliveries (Goldenberg et al., 2008).

The finding of short cervix on transvaginal ultrasound also is a known risk factor for preterm birth (Palatnik and Grobman, 2015).

Multiple gestations carry one of the highest risks of preterm delivery. Approximately 50% of twins and nearly all higher multiple gestations end before 37 completed weeks. The average length of gestation is significantly shorter for twins (36) weeks), triple (33 weeks), and quadruplets (31 weeks) than it is for singletons (39 weeks) (Cunningham et al., 2005).

The therapeutic interventions in the setting of preterm labor aim to inhibit or reduce the strength and frequency of contractions, which delays the time of delivery and to optimize fetal status before preterm delivery (*Iams et al.*, 2002).

During the last 15 years, vitamin D has attracted increased attention. This is mainly due to new discoveries about the impact of vitamin D on several health outcomes beyond its known metabolic actions on bone and mineral metabolism (*Manios et al.*, 2017).

Vitamin D is either produced in the skin in response to direct exposure to sunlight from dehydrocholesterol or obtained from the diet (Ramagopalan et al., 2010).

In addition to its effects on health and metabolism, vitamin D has raised interest because of the large variation in the prevalence of vitamin D deficiency across countries

worldwide, with estimates ranging from 2 to 90% (Manios et al., 2017).

Health care providers have reported large increases in vitamin D test requests (Basatemur et al., 2017). There is large heterogeneity between studies, mainly due to differences in the methods used to estimate vitamin D concentration in blood (*Manios et al.*, 2017).

Vitamin D level is defined as a serum level of 25hydroxycholecalciferol [25(OH)D]. Vitamin D insufficiency is defined as a 25(OH)D concentration of <30ng/ml and frank vitamin D deficiency is defined as a 25(OH)D concentration of <20ng/ml (*Adams et al.*, 2010).

Studies provide conflicting evidence for adverse maternal and child health outcomes related to vitamin D deficiency. However, the current state of evidence suggests unclear benefits of routine vitamin D supplementation for most maternal or child health outcomes. Despite that controversies, most Western countries recommend vitamin D supplementation during pregnancy (Eggemoen et al., 2016).

Multiple epidemiologic studies have found an association higher maternal serum 25-hydroxyvitamin between concentration, the physiological measure of vitamin D status, and lower Preterm birth risk (McDonnell et al., 2017).

AIM OF THE STUDY

This study aim to assess the association between vitamin D status and preterm labor.

Chapter 1

VITAMIN D

During the first third of the twentieth century, a major focus of research in physiological chemistry was the identification of vitamins, compounds that are essential to the health of humans but cannot be synthesized by them and must therefore be obtained in the diet. Early nutritional studies identified two general classes of such compounds: fat soluble vitamins and water soluble vitamins. Eventually the fat soluble group was resolved into the four vitamin groups A, D, E, and K, all of which are isoprenoid compounds synthesized by the condensation of multiple isoprene units. Two of these (D and A) serve as hormone precursors (prohormones) (*Nelson and Cox*, 2018).

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_2=C-CH=CH_2} \\ \text{Isoprene} \end{array}$$

Figure (1): Isoprene (Nelson and Cox, 2018).

Vitamin D was first discovered in1920 by Mellanby. It was first identified as a vitamin early in the 20thcentury, but now recognized as a prohormone. A unique aspect of vitamin D as a nutrient is that it can be synthesized by the human body through the action of sunlight. It is also naturally present in very few nutriments, and available as a dietary supplement. In