By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 1998. M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 2005.

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF BREEDING SYSTEM AND STRAIN ON PRODUCTIVITY AND RECOVERING OF BODY CONDITION IN RABBIT DOES AFTER KINDLING

By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 1998. M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 2005.

This Thesis for Ph.D. degree has been approved by:

Dr. Abd El-Hamid El-Sayed Abd El-Hamid Youssef
Prof. of Poultry Physiology, Faculty of Agriculture, Damanhur University.
Dr. Sayed Ahmed Abdel-Fattah
Prof. of Poultry Physiology, Faculty of Agriculture. Ain Shams
University.
Dr. Ayman Mohamed Hassan Ahmed
Prof. of Poultry Physiology, Faculty of Agriculture. Ain Shams
University.
Dr. Ibrahim El-Wardany El-Sayed Hassan
Prof. Emirates of Poultry Physiology, Faculty of Agriculture, Air
Shams University.

Date of examination: / / 2019

By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 1998.M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 2005.

Under The Supervision of:

Dr. Ibrahim El-Wardany El-Sayed Hassan

Prof. Emirates of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ayman Mohamed Hassan Ahmed

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Farid Mahmoud Hilmy

Head Researches of Animal Breeding, Department of Rabbit Breeding, Animal Production Research Institute.

By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 1998. M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 2005.

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF BREEDING SYSTEM AND STRAIN ON PRODUCTIVITY AND RECOVERING OF BODY CONDITION IN RABBIT DOES AFTER KINDLING

By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain ShamsUniv., 1998. M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 2005.

This Thesis for Ph.D. degree has been approved by:

Dr. Abd El-Hamid El-Sayed Abd El-Hamid Youssef
Prof. of Poultry Physiology, Faculty of Agriculture, Damanhur University.
Dr. Sayed Ahmed Abdel-Fattah
Prof. of Poultry Physiology, Faculty of Agriculture. Ain Shams
University.
Dr. Ayman Mohamed Hassan Ahmed
Prof. of Poultry Physiology, Faculty of Agriculture. Ain Shams
University.
Dr. Ibrahim El-Wardany El-Sayed Hassan
Prof. Emirates of Poultry Physiology, Faculty of Agriculture, Air
Shams University.

Date of examination: / / 2019

By

SHEREEN SALAMA YOUSSEF GHONEIM

B.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 1998.M.Sc. Agric. Sci. (Poultry Prod.), Fac. Agric., Ain Shams Univ., 2005.

Under The Supervision of:

Dr. Ibrahim El-Wardany El-Sayed Hassan

Prof. Emirates of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ayman Mohamed Hassan Ahmed

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Farid Mahmoud Hilmy

Head Researches of Animal Breeding, Department of Rabbit Breeding, Animal Production Research Institute.

ABSTRACT

Shereen Salama Youssef Ghoneim: Effect of breeding system and strain on productivity and recovering of body condition in rabbit does after kindling. Department of Poultry Production, Faculty of Agriculture, Ain Shams University,

Present study included two experiments, first experiment that aimed to study the effect of re-mating interval after first kindling only and breed and their interaction on body weight, body scores, some hormones, metabolites, milk yield, litter traits, ovary activity and reproductive performance in APRI line and Baladi Black breed rabbit. The rabbit does after the first parturition (primiparous) were allocated to: group 1 (PP): remating interval 1-day post kindling, group 2 (PS): re-mating interval 11 days post kindling and group 3(PW) re-mating interval after 35 days post kindling (after weaning).

The intermediate score was based for bone protrusions and muscle fullness on the lion and rump, the highest value at mating in PW group at 1st parity and during next parities. The highest (P≤0.05) value of leptin was recorded by PW group at mating during 1st Parity and 2nd Parity. there were significant differences on milk yield, the highest values were recorded by PW group during 3rd week of lactation while the lowest were recorded by PP group during 3rd and 4th weeks of lactation. The highest values of litter size (LS) were recorded in PW group. Data of comet test presented no significant effects were observed between groups. Result in 1stparity there is superiority for APRI line at kindling. APRI rabbits at 1st parity and next parities had significantly ($P \le 0.05$) higher in all litter size and litter weight traits than Baladi Black rabbits. Intermediate score was the highest values comparing to other scores during all parities and APRI rabbits at mating taken the highest value. Interaction between genotypes and re-mating interval had significant effect on plasma leptin, and insulin concentrations during 1st and 2nd parities. During 1st parity, there were significant differences on milk yield during all lactation periods studied except during 1st week of. During next parities, there were significant differences during all lactation periods. At first parity, there were significant differences in litter size at 21 days and at weaning due to the interaction. During next parities, all litter traits were significant differences except litter size and weight at 21 days. The interaction between breed and interval groups had a significant effect on kindling interval (KI) while it had not significant effect on number of services per conception (NSC) and gestation length (GL). In conclusion: delay the remating after first kindling resulted to improve reproductive performance in rabbit does.

Second experiment aimed to compare three breeding systems that differed in terms of reproductive rhythm and age of females at first mating on rabbit litter, reproductive traits and productivity in nulliparous does. Two genotypes APRI and Baladi Black were divided into three different groups; group W₂₄, 24 wk with 52 d; group W₂₇, 27 wk with 42d and group W₃₀, 30wk with 32d, according to reproductive rhythm and age of females at first mating, respectively. The effect of breeding system on litter traits separately for both APRI and BB breeds. There were significant differences on litter size at birth, Individual litter weights at birth and weaning for APRI rabbits. Breeding system had affected significant on NSC and KI in APRI rabbits does. The parity had a significant effect on all LS traits in APRI line. Mean bunny weight at weaning was highest in W24 group during all parities in APRI rabbit line. In the BB rabbits breed the mean weight at weaning was lightest in W30 group comparing with W24 and W27 groups. The productivity at weaning in APRI rabbit line was the highest for W30 group (11.7 kg/year) and the lowest for group W24 (10.5 kg/Year). Productivity in Baladi Black rabbit breed showed that at weaning in W24 group was the (9.20 highest values kg/year) and the lowest for group W30(7.05kg/Year).

In conclusion, an early 1st mating (24 week) associated with an extensive reproduction rhythm (52 d) resulted in higher productivity (kg/year) at weaning in APRI line. An intensive reproduction rhythm (32 d) combined with a 1st mating at 30 weeks, for females of Baladi Black breed to improve their productivity (kg/year) at weaning.

Key words: Rabbits does, Postpartum, Re-mating interval, Hormones, Blood biochemicals, Litter traits, Weaning age, Reproductive performance, Milk yield, Body condition score, Ovary, Comet, Breeding system, Age at first mating, Individual litter weight, Mean bunny weight, Productivity, and Parity

ACKNOWLEDGEMENT

I'd like to express my deep gratitude and cardiac sincere to **Dr. Ibrahim El-Wardany El-Sayed Hassan,** Professor Emeritus of Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Ain Shams University, for his great participation as my principal supervisor for this study, his excellent suggestions and considerable consultation, revising, great efforts, continual help and providing facilities throughout the work of the thesis.

I'm greatly indebted and express my sincere appreciation to **Dr. Ayman Mohamed Hassan Ahmed,** Professor of Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Ain Shams University, for his ongoing assistance, advice, valuable discussion, encouragement, useful criticism and supervision throughout the work of this thesis.

Deep gratitude to **Dr. Ahmed Farid Mohamed Hilmy,** Head researcher of Animal Breeding, Animal Production Research Institute, Agriculture Research Center, for his kind help, his scientific advices, his fruitful assistance, encouragement and supervision throughout the work of this thesis.

Special thanks are also to **Dr. El-Sayed Mahfouz Abd El-Kaffy**, Head researcher of Animal Husbandry, Animal Production Research Institute, Agriculture Research Center, for designing and planning the experimental study, doing his best, ongoing assistance, reading and revising the manuscript, his continuous guidance and supervision throughout the work of this thesis.

Also, many thanks for all staff members of Department of Rabbit Research, Animal Production Research Institute and staff of Poultry Production Department, Faculty of Agriculture, Ain Shams University for their cooperation.

Finally, I wish to present this thesis to the memory of my parents and my husband and by little son Mohamed and my brother and sister.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VIII
LIST OF APPENDICES	X
LIST OF ABBREVIATIONS	XI
INTRODUCTION	1
REVIEW OF LITERATURE	3
Doe performance	3
1.Relationship between breeding system and some parameters	3
1.1. Body weight	3
1.2. Body condition	6
1.3. Some plasma hormones and biochemical constituents	7
1.4. Milk Yield	8
1.5. Litter traits	9
1.5.1. Litter size	9
1.5.2. Litter weight	11
1.6. Ovary activity	12
1.7. Reproductive traits	13
1.7.1. Fertility	14
1.7.2. Gestation Length	15
1.7.3. Kindling interval	15
2. Relationship between Age at first mating and breed	16
3. Relationship between Age at first mating and some productive and	
reproductive traits	16
3.1. Body condition and mobilization	17
3.2. Litter traits	19
4. Relationship between Breed and some productive and	
reproductive traits	19
4.1. Body weight and condition	20
4.2. Milk yield	21
4.3. Litter traits	23

	Page
4.4. Reproductive traits	27
4.4.1. No of services per Conception	28
4.4.2. Gestation length and kindling interval	28
MATERIALS AND METHODS	30
1. First Experiment	30
1.1. Experimental design and Animals	30
1.2. Housing and feeding	31
1.3. Management	31
1.4. Measurements	31
1.4.1. Body weight and Body condition score (BCS)	32
1.4.2. Blood parameters	32
1.4.2.1. Hormonal assays	32
1.4.2.2. Metabolites assays	33
1.4.3. Milk yield traits	34
1.4.4. Litter traits	34
1.4.5. Ovary activity	34
1.4.5.1. Histological examination	35
1.4.5.2. Comet test	35
1.4.5.2.1. Protocol Comet test	35
1.4.5.2.2. Scoring of Comets	36
1.4.6. Reproductive performance	37
1.5. Statistical analysis	37
2. Second Experiment	38
2.1. Experimental design and Animals	38
2.2. Housing and feeding	39
2.3. Managements	39
2.4. Measurements	39
2.5. Statistical analysis	39
RESULTS AND DISCUSSION	41
First experiment	41
1. Effect of re-mating interval groups	41

	Page
1.1. Body weights and body condition score	41
1.2. Hormonal assay	43
1.3. Blood biochemical parameters	45
1.4. Milk yield	47
1.5. Litter traits	49
1.6. Ovarian status	51
1.6.1. Histological examination	51
1.6.1.1. Differences between re-mating groups in APRI line	51
1.6.1.2. Differences between re-mating groups in Baladi Black	
breed	53
1.6.2. Comet test	54
1.7. Reproductive traits	55
2. Effect of genotype	56
2.1. Body weights and body condition score	56
2.2. Hormonal assay	58
2.3. Blood biochemical parameters	60
2.4. Milk yield	60
2.5. Litter traits	62
2.6. Ovarian status	64
2.6.1. Histological examination	64
2.6.2. Comet test	66
2.7. Reproductive traits	66
3. Effect of interaction between genotypes and re-mating interval	
groups	67
3.1. Body weights and body condition score	67
3.2. Hormonal assay	69
3.3. Blood biochemical parameters	71
3.4. Milk yield	72
3.5. Litter traits	76
3.6. Ovarian status	80
3.6.1. Histological examination	80

	Page
3.6.2. Comet test	84
3.7. Reproductive traits	85
Second experiment	90
1. Effect of breeding system in both APRI and Baladi Black	
rabbits	90
1.1. Litter traits	90
1.2. Reproductive performance	91
2. Effect of parity in both APRI and Baladi Black rabbits	93
2.1. Litter traits	93
2.2. Reproductive performance	94
3. Effect of breeding system and parity in both APRI and Baladi	
Black rabbit	95
3.1. Mean bunny weight at weaning	95
4. Effect of breeding system on Productivity	97
4.1. APRI rabbit	97
4.2. Baladi Black rabbit	98
SUMMARY AND CONCLUSION	100
REFERENCES	107
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Characteristics of the three remating intervals groups	
	after 1 st kindling.	31
2	Characteristics of the three-breeding system.	39
3	Body weight and body score of rabbit does during the	
	first parity and next parities as affected by re-mating	
	interval groups after first kindling.	42
4	Effects of re-mating interval groups on plasma leptin,	
	insulin and T3 concentrations of rabbit does during first	
	parity and second parity.	44
5	Effect of re-mating interval groups on some	
	biochemical parameters of rabbit does during first	
	parity and second parity.	46
6	Effect of re-mating interval groups on daily milk yield	
	of rabbit does during first parity and next parities	48
7	Effect of re-mating interval groups on the main litter	
	traits of rabbit does during first parity and next parities.	50
8	Effect of re-mating interval groups on DNA damage in	
	ovary cells of rabbit does during the second parity.	54
9	Effect of re-mating interval groups on some	
	reproductive traits of rabbit does during next parities.	56
10	Effect of genotypes on body weight and body scores of	
	rabbit does during first parity and next parities.	57
11	Effects of genotype on plasma leptin, insulin and T3	
	concentrations of rabbit does.	59
12	Effects of genotype on some blood biochemical	- 4
	parameters of rabbit does.	61
13	Effect of genotype on milk yield (g) at first parity and	~
	during next parities in rabbit does	62
14	Effect of genotype on the main litter traits during first	63