

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF STRUCTURAL ENGINEERING

INVESTIGATION OF THE PERFORMANCE OF SKIRTED FOUNDATIONS IN COHESIVE SOIL

THESIS

Submitted in partial fulfillment of the requirements for Degree of Master of Science in Civil Engineering Structural Engineering Department (Geotechnical Engineering)

BY

Hesham Mohamed Gamal Ahmed

B.Sc. Building & construction Engineering (2012)
October 6 University

Supervised By

Prof. Dr. Yasser M. El-Mossallamy

Professor of Geotechnical Engineering Structural Engineering Department Ain Shams University - Faculty of Engineering

Dr. Mohamed Maher Tawfik

Assistant professor of Geotechnical Engineering Structural Engineering Department Ain Shams University - Faculty of Engineering

Cairo -2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name: Hesham Mohamed Gamal Ahmed Refaat

Thesis: Investigation of the performance of Skirted foundation in

Cohesive soil

Degree: Master of science in civil engineering (Structural)

EXAMINERS COMITEE

Name and Affiliation	Signature
Prof. Dr. Ahmed Mosalem Samieh	
Professor of Geotechnical Engineering	
Faculty of Engineering Helwan University	
Prof. Dr. Mohamed Mounir Sayed Morsi Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Prof. Dr. Yasser Moghazy El Mossallamy Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

Date: 2/5/2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name: Hesham Mohamed Gamal Ahmed Refaat

Thesis: Investigation of the performance of Skirted foundation in

Cohesive soil

Degree: Master of science in civil engineering (Structural)

SUPERVISORS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Yasser El Moghazy El Mossallamy Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Dr. Mohamed Maher Tawfik Assistant Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	

Date: 2/5/2019

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2019

College Board approval University Board approval

/ / 2019 / / 2019

STATEMENT

This thesis is submitted to Ain Shams University for the degree of M.Sc. in

Civil Engineering.

The work included in this thesis was carried out by the author at the

Department of Structural Engineering, Faculty of Engineering, Ain Shams

University, from June 2015 to October 2018.

No part of this thesis has been submitted for a degree or a qualification at

any other University or Institution.

Name: Hesham Mohamed Gamal Ahmed

Signature:

Date:

/ / 2019

CURRICULUM VITAE

Name Hesham Mohamed Gamal Ahmed Refaat

Date of Birth 24, June, 1990

Place of Birth Giza, Egypt

Nationality Egyptian

Scientific degree BSc. of Building and Construction, Faculty of

Engineering, October 6 University, 2012

Current Job Demonstrator of Geotechnical Engineering and

Foundations, Building and Construction Department,

Faculty of Engineering, October 6 University

AKNOWLEDGEMENT

First and foremost thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Prof. . Dr. Yasser Moghazy El Mossallamy, Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication and encouragement throughout this research till its completion which is gratefully acknowledged and sincerely appreciated.

My grateful appreciation also extends to Dr. Mohamed maher, Assistance Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his kind supervision, fruitful comments and valuable advice.

My cordial thanks spread out to my mother for her love, support ,guidance throughout my life and for inculcating in me the passion for knowledge and creating a conductive atmosphere for research and study. Your constant and everlasting support is the reason i was able to finish this research.

Hesham Gamal

Structural Engineering Department

Abstract of the M.Sc. Thesis submitted by:

Hesham Mohamed Gamal Ahmed

Title of Thesis:

Investigation of the Performance of Skirted Foundations in Cohesive Soil

Supervisors: **Prof. Dr. Yasser M. El-Mossallamy**

Dr. Eng. Mohamed Mahr Tawfik

Abstract

One predominant challenge faces the geotechnical engineers is to evaluate of the behavior of shallow foundations subjected to inclined and eccentric loads (i.e. horizontal loads, H, and moments, M, in addition to central vertical loads, V). This sort of shallow foundations practice is encountered in various applications, especially the offshore structures. The foundations of offshore structures are often subjected to substantial horizontal loads and moments resulting from the frequent environmental loads acting laterally on the superstructure, e.g. wind and wave forces consequent to a storm. In some cases, however, the subsoil below the sea bed can be of highly compressive cohesive soils, e.g. marine deposits. In such conditions, the soil load carrying capacity may be insufficient to resist the imposed inclined and eccentric loads, besides considerable foundation settlements may occur. In such a case, therefore, in last a few pervious decades a new technique was developed in offshore engineering, called skirted foundation.

Skirted foundations have been widely used for offshore structures as a temporary foundation system to fix the jacket structures and tension leg platforms until constructing the permanent deep foundations. Generally, a skirted foundation is a conventional surface footing rounded, however, with circumferential vertical skirts. Sometimes, additional internal skirts are used. The skirts penetrate the soil vertically creating a plug of confined soil beneath the footing and, thus, the soil lateral movement is constrained. Due to the encountered fully constrained soil plug beneath the footing, the majority of vertical loads are transferred to the depth of the skirt tip. Accordingly, the soil bearing capacity is markedly increased. Furthermore, the increased drainage path length (i.e. from beneath the footing to the skirt tip level and then to the free surface) will lead to longer times for dissipating the excess pore water pressure below

the footing compared with a conventionally embedded shallow foundation. Therefore, full stability analysis required for analyzing its behaviour in short and long term.

Two different case studies are applied to represent skirted foundations under short time loading (Undrained behaviour of soil) and on long term loading. The first study case includes field test results of mini models for skirted foundations rested in clay soil at the Aalborg University clay test site, Denmark and other case includes laboratory tests of soft clay soil. Numerical analyses using two dimensional finite element method applying different constitutive models are used to investigate the performance of skirted foundation under different loading conditions. Parametric study was conducted to investigate the effect of some parameters on the bearing capacity and consolidation response of skirted foundations such as: embedment depth, skirt roughness and load inclination. The results confirmed that the bearing capacity of skirted foundations under centric or eccentric inclined loads increased magnificently with increasing the embedment depth and skirt roughness. Moreover, these also contribute to a decrease of settlement values and accelerate the consolidation rate of skirted foundations.

Keywords: Skirted foundation; Cohesive Soil; Finite Element Analysis Constitutive Models; Undrained Bearing capacity; Consolidation; Parametric Study.

TABLE OF CONTENTS

TAI	BLE OF CONTENTS	I
LIS	T OF FIGURES	IX
LIS	T OF TABLES	XVII
LIS	T OF SYMBOLS	XVIII
Cha	apter 1 INTRODUCTION	
1.1	General	1
1.2	Objectives of This Research:	3
1.3	Organization of the present work	3
Cha	apter 2 LITERATUREREVIEW	
2.1	Introduction	6
2.2	Offshore History	6
2.3	Offshore Platforms In Egypt	7
2.4	Type Of Offshore Platforms	9
	2.4.1 Gravity based structures (GBS)	9
	2.4.2 Jacket platforms	10
	2.4.3 Jack – up platforms	11
	2.4.4 Tension-leg platforms (TLP)	11
	2.4.5 FPSs and FPSOs	12
2.5	Types Of Marine Foundations	13
	2.5.1 Piled foundations	13
	2.5.2 Shallow foundations	13
	2.5.3 Anchors	14
2.6	The Challenges Of Shallow Offshore Foundations.	14
2.7	Skirted Foundation	16
	2.7.1 Introduction	16
	2.7.2 Structural geometry & Material of skirted foundation	17
	2.7.3 Characteristic of skirted foundations	18

	2.7.4 Installation of skirted foundations	. 19
	2.7.5 Applications of offshore skirted foundation system	. 19
	2.7.5.1 Concrete gravity bases	. 19
	2.7.5.2 Concrete caissons for TLPs	20
	2.7.5.3 Steel buckets for jackets	21
	2.7.5.4 Subsea template	21
	2.7.6 History of skirted foundations.	22
2.8	Design Aspect of Skirted Foundation	. 25
	2.8.1 Soil investigation	. 25
	2.8.2 Loading conditions	. 25
	2.8.3 Installation aspect	. 25
	2.8.4 Short term analysis	. 25
	2.8.5 Long term capacity	. 25
2.9	Short Term Analysis	26
	2.9.1 Bearing capacity	26
	2.9.2 Ultimate bearing capacity of surface foundation under vertical loading	. 28
	2.9.3 Ultimate bearing capacity of skirted foundations under vertical loading	30
	2.9.3.1 Simplified approximated approach	30
	2.9.3.2 Actually advanced method	31
	2.9.4 Undrained bearing capacity of surface foundation under combined loading	. 33
	2.9.4.1 Inclined loading	. 33
	2.9.4.2 Effective area method	34
	2.9.4.3 Failure envelope	36
incli	2.9.4.4 Numerical and Plasticity analysis for surface foundation under eccentric ined loading	
	2.9.5 Ultimate bearing capacity of skirted foundation under general loading	
	2.9.5.1 Eccentric & inclined loading of skirted foundations	
2.10	Review Of Pervious Work	
	Long Term Analysis	
	2.11.1 Consolidation	

	2.11.2 One-dimensional consolidation	47
	2.11.3 Primary consolidation parameters	49
	2.11.4 Consolidation settlement calculation	50
	2.11.5 One dimensional consolidation theory	51
	2.11.6 Three-dimensional consolidation analysis	53
	2.11.7 Embedment effect on consolidation	54
	2.11.8 Consolidation response of skirted foundations	54
2.12	2 Preview of Previous Studies	56
2.13	3 Discussion	58
2.14	Research Objectives	59
Cha	apter 3 NUMERICAL MODELING	
3.1	Introduction	60
3.2	Finite Element Method.	60
	3.2.1 General	60
	3.2.2 Analysis procedure of finite element method	61
	3.2.3 Elements shapes	62
	3.2.3.1 One dimensional elements	62
	3.2.3.2 Two dimensional elements	62
	3.2.3.3 Axisymmetric elements	62
	3.2.3.4 Three dimensional elements	62
	3.2.4 Two dimensional simulation of special three dimensional problems	64
	3.2.4.1 Plane strain	64
	3.2.4.2 Plane stress	64
	3.2.4.3 Axisymmetric problems	65
3.3	Material Modeling Basics	66
	3.3.1 General	66
	3.3.2 Stresses	66
	3.3.3 Strains	68
3.4	Constitutive Material Models	69

	3.4.1 Linear elastic constitutive law	. 69
	3.4.2 Non linear elastic constitutive laws	. 69
	3.4.3 Elasto-plastic constitutive laws	. 70
	3.4.4 Elasto-visco plasticity constitutive laws	. 75
3.5	Soil Material Models Used in This Research	. 75
	3.5.1General	. 75
	3.5.2 Mohr-Coulomb Model	. 76
	3.5.2.1 Formulation of the Mohr-Coulomb model	. 76
	3.5.3 Soft soil model	. 78
	3.5.3.1 General	. 78
	3.5.3.2 Basic of soft soil model	. 78
	3.5.3.3 Yield function in soft soil model	. 79
	3.5.3.4 Parameter of the soft soil model	. 80
	3.5.4 Hardening soil model	. 81
3.6	Interface element	. 84
3.7	Numerical model applied in this research	. 85
	3.7.1 Geometry and boundary conditions of the model	. 85
	3.7.2 Type of element used in this model	. 86
	3.7.3 Generation of finite element mesh	. 86
	3.7.4 Generation of water pressure and initial stress	. 87
	3.7.5 Calculation phases.	. 88
Cha	apter 4 SHORT TERM ANALYSIS OF SKIRTED FOUNDATION	
4.1	Introduction:	. 89
4.2	Case Study	. 89
	4.2.1 Soil test location	
	4.2.2 Geological characterization	. 90
	4.2.3 Experimental tests	
	4.2.3.1 Undrained shear strength	
	4.2.3.2Other experimental tests	

	4.2.4Testing Program	93
	4.2.5 Results of tests	93
4.3	Verification of Numerical Models	94
	4.3.1 Geometry and boundary condition	95
	4.3.2 Material properties	96
	4.3.2.1 Mohr coulomb model	96
	4.3.2.2 Double hardening soil model	96
	4.3.2.3 Soft soil model	97
	4.3.3 Mesh density	98
	4.3.4 Loading condition & calculation steps	99
	4.3.5 Comparison between fields tests and finite element results	100
4.4	Numerical Modeling of Skirted Foundations In Short Term Condition	101
	4.4.1 Circular skirted foundation	101
	4.4.1.1 Model	101
	4.4.1.2 Geometry	101
	4.4.1.3 Material and interface	102
	4.4.1.4 The mesh	103
	4.4.1.5 loading	103
	4.4.1.6 Initial condition	104
	4.4.1.7 Calculation	105
	4.4.1.8 Results	105
4.	4.1.8.1 Deformation	106
	4.4.1.8.2 Structural force	107
	4.4.2 Strip Skirted Foundation	109
	4.4.2.1 Model	109
	4.4.2.2Geometry	110
	4.4.2.3 Structural foundations	110
	4.4.2.4 Material properties	113
	4.4.2.5 The mesh	113

	4.4.2.6 Loading	. 113
	4.4.2.7 Initial condition	. 114
	4.4.2.8 Calculation	. 115
	4.4.2.9 Results	. 116
	4.4.2.9.1 Settlement	. 116
	4.4.2.9.2 Failure mechanism	. 121
	4.4.2.9.3 Excess pore pressure	. 122
4.5	Load Displacement Curve Of Skirted Foundation	. 125
4.6	Interpretation point of failure for skirted foundation	. 125
4.7	Parametric study results	. 128
4.8	Parametric Study Results For Circular Skirted Foundation	. 128
	4.8.1 Bearing capacity	. 128
	4.8.1.1 Effect of embedment depth	. 129
	4.8.1.2 Effect of skirt roughness	. 131
	4.8.2 Settlement	. 133
	4.8.2.1 Effect of skirt roughness	. 133
4.9	Parametric Study Results For Strip Skirted Foundation	. 134
	4.9.1 Bearing capacity of strip skirted foundation	. 134
	4.9.1.1 Centric loads	. 134
	4.9.1.2 Inclined loading of strip skirted foundation	. 135
	4.9.1.3 Eccentric inclined loading of strip skirted foundation	. 136
	4.9.1.4 Effect of skirt inclination	. 138
	4.9.2 Comparison between skirted foundations and other embedment foundation	.S
syst	tems	. 139
Ch	apter 5 LONG TERM ANALYSIS OF SKIRTED FOUNDATION	
5.1	Introduction	. 142
5.2	Case Study	. 142
	5.2.1 Mechanical properties	. 143
	5.2.2 Deformation properties	. 143

5.3	Numerical Modeling Of Consolidation Test	144
	5.3.1 Mesh density and initial condition	146
	5.3.2 Calculation and results	146
	5.3.3 Verification of case study	147
5.4	Consolidation Analysis Of Circular Skirted Foundations	148
	5.4.1 The numerical model	148
	5.4.2 Geometry and material properties	148
	5.4.3 Loading	149
	5.4.4 Mesh and initial condition	149
	5.4.5 Calculation	151
	5.4.6 Results	151
	5.4.6.1 Undrained loading	151
	5.4.6.2 Consolidation	154
	5.4.6.3 Effect of consolidation in shear strength	156
5.5	Consolidation analysis of strip skirted foundation	158
	5.5.1 Introduction	158
	5.5.2 The numerical model	158
	5.5.3 Geometry and material properties	158
	5.5.4 Loading condition	159
	5.5.5 Mesh and initial condition	159
	5.5.6 Calculation	160
	5.5.7 Results	161
5.6	Parametric Study Results	164
5.7	Parametric Study Results Circular Skirted Foundations	164
	5.7.1 Initial excess pore pressure distribution	164
	5.7.2 Excess pore pressure dissipation.	167
	5.7.3 Consolidation settlement	172
5.8	Strip Skirted Foundation	175
	5.8.1 Excess pore distribution	175