

'Development of Copolymer as an Enzyme Immobilization Support for Bio- Application'

Submitted to Department of Chemistry, Faculty of Science for the Requirements of the Degree of

Ph.D

Presented by

Noha Amaly Mohammed

Supervised by

Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry- Department of Chemistry-Faculty of Science, Ain Shams University

Prof. Dr. Emad Ali Soliman

Professor of Polymer Science and Technology, Polymeric Materials Research, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications

Dr. Mohammed Ramadan El-Assar

Associate Professor of Polymer Science and Technology, Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications

Approval Sheet

Ph.D.Thesis

Development of Copolymer as an Enzyme Immobilization Support for Bio- Application'

Submitted by

Noha Amaly Mohammed Abdelbaky

This thesis has been approved for submission by supervisors:

Thesis supervisors APPROVED

Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry-Department of Chemistry-Faculty of Science, Ain Shams University.

Prof. Dr. Emad Ali Soliman

Professor of Polymer Science and Technology, Head of Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications

Dr. Mohammed Ramadan El-Assar

Associate Professor of Polymer Science and Technology, Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications

Head of Chemistry Department

Prof. Dr. Ibrahim H. A. Badr

Dedication

To my father soul, Prof. Amaly Mohammed.

I ask you to pray for him.

ACKNOWLEDGEMENT

First of all, I thank "Allah" for supporting me in everything in my life.

The author wishes to express his deepest gratitude to **Prof. Dr. Emad Ali Soliman**. Professor of Material Sciences and Head of Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Alexandria for suggesting the problems, valuable proposals, constructive criticism, encouragement, support, supervising and continuous help all over this work.

Many thanks for **Dr. Mohammed Ramadan**, Assistant professor of Material Sciences Polymeric Materials Research department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Alexandria, for Alexandria for suggesting the problems, valuable proposals, constructive criticism, encouragement

Deep thanks and gratitude to **Prof. Dr. Ahmed Ismail Hashem,** Professor of Organic Chemistry, Faculty of Science, Ain Shams University, for his Interest in the work, guidance, revising the work, and correcting the thesis till it reached its present form.

Special thanks, gratitude and appreciations to **Prof. Dr. Gang Sun** Professor of polymers. University of California, Davis, USA, for supporting me, revising the work and continuous help for all details that push me to complete thesis away from my home country.

I am grateful to everyone who had helped me in my struggle to achieve my dream of becoming a Ph. D. Deep thanks to my family [Mother (Wafaa) and Brother (Amr)]. With great appreciation I shall acknowledge my Husband (Dr. Ahmed El-Moghazy) who supported me during my work. Deep thanks to my children (Basmala and Yahia) for their patience when I was busy most of time.

	List of Abbreviations
AIBN	Azo-bisisobutyronitrile
ALL	Acute lymphoblastic leukemia
APS	Ammonium persulphate
APTT	Activated partial thrombin time
AYA	Adolescent and Young Adult
BSA	Bovine albumin serum
CLEAs	Cross-linked enzyme aggregates
CRPP	Controlled/"living" radical precipitation
	polymerization
DC	Direct current
DMF	Dimethylforamide
DPP	Distillation precipitation polymerization
DS	Dextran sulfate
DVB	Divinyl benzene
Ea	Activation Energy
ECH	Epichlorohydrin
EDAC	1-Ethyl-3-(3-(dimethylamino)propyl)
	carbodiimide hydrochloride
EDX	Energy-dispersive X-ray
ELISA	Enzyme-linked immune sorbent assays
EORTC-CLG	The European Organization for Research
	and Treatment of Cancer-Children's
	Leukemia Group
ES	Electrospinning
FP	Feather polypeptide
FRP	Free radical polymerization
GMA-co-DVB	Poly(glycidyl metharylate-co-
	divinylbenzene)
GOX	Glucose oxidase

HRP	Horseradish peroxidase
¹ H-NMR	Proton nuclear magnetic resonance
IgG	Antibodies
Km	Michaelis constant
L-ASNase	L-Asparaginase enzyme
LMA-DVB	Lauryl methacrylate—divinylbenzene
LMWP	Low molecular weight protamine
LRPP	Living' radical precipitation
	polymerization
MACI	Methacrylate chloride
MBA	<i>N,N</i> –Methylene bis-acrylamide
MD	Molecular dynamic
NtBA	N-tert-butylacrylamide
NFM	Nanofiber mat
P (St-co-MAA)	Poly (styrene-co-methacrylic acid)
P(EGDMA-co-	Poly (ethyleneglycol dimethacrylate-co-
MAA)/PDVB	methacrylic acid) / polydivinylbenzene
P(HEMA)	Poly (2-hydroxyethyl methacrylate),
P(St-co-AA)-b-	Poly (styrene-co-acrylic acid)-b-poly
PVP-b-P(St-co-AA)	(vinyl pyrrolidone)- b-poly(styrene-co-
	acrylic acid)
P(St-HEMA)	Poly (styrene- 2- hydroxyethyl
	methacrylate),
PAA	Polyacrylic acid
PANI	Polyaniline
PaS	Pascal per second
PBLG	Poly(γ-benzyl-L-glutamate)
PBS	Phosphatic buffer solution
PDVB	polydivinylbenzene
PEAA	poly(ethylene-co-acrylic acid)
PEG	Poly ethylene glycol
PEG -g- VP	PEG-g- vinylpyrrolidone

PEG L- ASNase	Pegaspargase
PEG-g-PMA	PEGgrafted vinylpyrrolidone-maleic
	anhydride
PEI	Polyethylene imine
PEO	Polyethylene oxide
PET	Poly(ethylene terephthalate)
PEUU	Poly(ester-urethane)urea
PHAs	Polyhydroxyalkanoates
РНВ	Poly(3-hydroxybutyrate)
PHBH	Poly (3-hydroxybutyrate-co-3-
	hydroxyhexanoate)
PHBV	Poly(3-hydroxybutyrate-co-3-
	hydroxyvalerate)
PIPP	Photo-initiated precipitation
	polymerization
PLCL	poly(lactic acid- <i>co</i> -ε-caprolactone)
PLGA	poly (lactide-co-glycolide)
PMAA	poly methacrylic acid
PNtBA	poly(N-tert-butylacrylamide)
PP	Precipitation polymerization
PRP	Platelet rich plasma
PSF	Polysulfone
PSf-Cl	Chloromethylated polysulfone
PSt	Polystyrene
P(St-co-MA)	styrene - maleic anhydride copolymer
PU	Polyurethane
PUU	Polyurethane urea
PVA	Polyvinyl alcohol
PVDMA	poly(2-vinyl-4,4-dimethylazlactone)
PVP	Poly(vinyl pyrrolidone)
QM-MM	Quantum mechanics molecular dynamics
R.A	Retention of activity

RBCs	Red blood cells
SF	Silk fabrion
SFN	Silk fibroin nanoparticle
St-DVB-PGA	St-DVB copolymer -polyglutaraldehyde
TDM	Therapeutic drug monitoring
TEDETA	Tetraethyldiethylenetriamine
TFA	Trifluoroacetic acid
THF	Tetra hydrofuran
UKALL	United Kingdom Medical Research
	Council Acute Lymphoblastic Leukaemia
UV	Ultraviolet
$\mathbf{V}_{\mathbf{m}}$	Maximal velocity
WSC	Water-soluble chitosan
XRD	X-Ray diffraction analysis
β-CD	β-cyclodextrin

Contents

Content	Page
1.Introduction	1
1.1. Free radical polymerization	3
1.2. Polymerization techniques	5
1.3. Polymers and copolymers prepared by precipitation polymerization	13
1.4. Preparation techniques of nanoparticles polymers	17
1.5. Electrospun Nanofibers	23
1.6. L-Asparaginase enzyme (L-ASNase)	46
1.7. Leukiemia treatment ways by L-ASNase	49
1.8. Enzyme immobilization techniques	60
1.9. Immobilization of L-ASNase on various support	67
1.10. Blood compatibility	77
1.11. Poly styrene and poly acrylic for enzyme immobilization	86

Contents

Aim of the work	94
2. Results and Discussion	98
2.1. Preparation of P (Styrene-co-methacrylic acid)	00
copolymer	98
2.2. Copolymer modifications	127
2.3. Optimizing L-ASNase immobilization	1 4 4
Performance on P (St-co-MAA) nanoparticles	144
2.4. Biocatalytic evaluation of <i>P</i> (<i>St-co-MAA</i>)	1.51
nanospheres bioactivated (L-ASNase-copolymer)	151
2.5. Blood Compatibility assessment	161
2.6. P (St-co-MAA) Nanofiber synthesis	169
2.7. L- ASNase immobilization by P (St-co-MAA)	106
nanofiber	186
2.8. Comparison between Nanofiber and	100
nanoparticles for L-ASNase immobilization	199
3. Material and Methods	208
3.1. Materials and Chemicals	208
3.2. Apparatus	208
3.3. Experimental Part	209

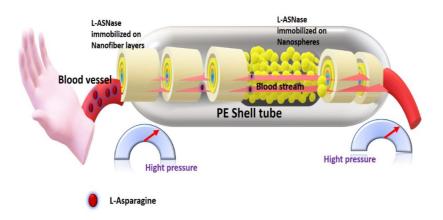
4. References

229

Arabic Summary

Abstract

L-Asparagine is an essential amino acid for the growth of both normal and cancer cells. Normal cells can produce the amino acid by means of L-Asparagine synthetase enzyme which produced only from normal cells. However, cancer cells use amino acids in the blood. In the presence of L-ASNase. L-Aasparagine is hydrolyzed into L-Aspartate and ammonia. So, cancer cells are unable to divide, and they die. So, L-ASNase enzyme is considered most important step in leukemia treatment. It is applied to patient by injection form. However, injection of L-ASNase was associated with a unique set of side effects, as an allergic or hypersensitivity reaction.


Subsequently, L-ASNase immobilization is new pathway for Leukemia treatment that make lower contact of enzyme with blood and cells, so lowering allergic effect by L-ASNase in blood for long time (half time).

In this work, P(St-co-MAA) was developed in the form of nanoparticles by precipitation polymerization and nanofiber by electrospinning technique. The produced copolymer P(St-co-MAA) functionalized with carefully selected spacer arm polyethylene imine and coupling agent glutaraldehyde to act as support for L-ASNase, to improve stability and activity of attached enzyme.

All factors affecting particles yield and size or nanofiber morphology and size were studied. The factors affecting functionalization process were also studied to get optimum modification conditions and immobilization conditions.

The P (St-co-MAA) synthesized copolymer was characterized by FT-IR, TGA, ¹H-NMR, SEM, contact angle, EDX and DSC to confirm the successful copolymerization. Prototype for extracorporeal system was suggested by combination of both nanofiber and nanoparticles forms to get advantageous of both. The blood compatibility tests were also suggested that P(St-co-MAA) +PEI +GA is blood compatible and can be used in contact with blood.

Keywords: L-Asparaginase, copolymer, styrene, methacrylic acid, nanospheres, nanofibers, leukemia and immobilization.

Graphical Abstract: Model for prototype of extracorporeal system based on L-ASNase enzyme immobilized on functionalized nanofibers and nanoparticles for leukemia treatment.

Summary

Enzymes are bio-catalysts produced by nature and are completely biodegradable. In addition, the mild operating conditions of enzymatic processes mean that they can be operated in relatively simple and totally controlled equipment. In short, they reduce environmental drawbacks of manufacturing by reducing the consumption of energy and chemicals and concomitant generation of wastes. However, all these desirable characteristics of enzymes and their widespread industrial applications are often hampered by their lack of long-term operational stability and shelf-storage life and by their cumbersome recovery and re-use. These drawbacks can generally be overcome by immobilization of enzymes onto solid supports.

In fact, a major challenge in industrial bio-catalysis is the development of stable, robust, and preferably insoluble biocatalysts. The polymerization provides a simple and versatile method to fabricate polymeric supports, with controllable size. Recently, growing interest was devoted using nanoparticles carriers for to enzyme immobilization. The effective enzyme loading nanoparticles can be very high and a large surface area per unit mass is also available to facilitate reaction kinetics. In