Temporomandibular Joint Assessment in Relation to Serology and Disease Activity in Rheumatoid Arthritis Patients using Cone Beam Computed Tomography

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University, in Partial fulfillment of the Requirements for the Doctor's Degree in Oral Radiology and Diagnosis

$\mathcal{B}y$

Mostafa Mahmoud Youssef Mohamed

Assistant Lecturer of Oral & Maxillofacial Radiology Faculty of Dentistry, Assuit University BDs, 2005, Minia University MSc, Oral Radiology 2013, Minia University

Supervisors

Dr. Mary Medhat Farid

Assoc. Professor of Oral Radiology,
Department of Oral Medicine, Periodontology, Diagnosis, and Oral Radiology
Faculty of Dentistry, Ain-Shams University

Dr. Mushira M. Dahaba

Professor of Oral & Maxillofacial Radiology, Department of Oral & Maxillofacial Radiology, Faculty of Oral and Dentistry, Cairo University

Dr. Adel Mahmoud Ali Elsayed

Professor of Internal Medicine & Rheumatology Head of Rheumatology Department, Faculty of Medicine, Ain Shams University

Faculty of Dentistry, Ain Shams University

تقييم حالة مفصل الفك بالنسبة للتحاليل و نشاط المرض لدى مرضى التهاب المفاصل الروماتيزمي باستخدام الاشعة المقطعية مخروطية الشعاع

رسالة

مقدمة: إلى قسم طب الفم و علاج اللثة و التشخيص و الأشعة كلية طب الأسنان – جامعة عين شمس توطئة للحصول على درجة الدكتوراه في أشعة الفم والتشخيص

مقدمه من

طبيب / مصطفى محمود يوسف محمد بكالوريوس طب الأسنان، جامعة المنيا 2005م ماجستير أشعة الفم، جامعة المنيا 2013م مدرس مساعد بقسم أشعة الفم والوجه والفكين كلية طب الأسنان، جامعة أسيوط

المشرفون

أ.م.د /ماري مدحت فريد

أستاذ مساعد بقسم طب الفم و علاج اللثة والتشخيص والأشعة كلية طب الأسنان- جامعة عين شمس

أ.د/ مشيره محمد عبد اللطيف دهبه

أستاذ أشعة الفم والوجه والفكين

كلية طب الأسنان- جامعة القاهرة

أ.د/ عادل محمود على السيد

أستاذ الباطنة العامة والروماتيزم ورئيس قسم الروماتيزم كلية الطب - جامعة عين شمس

كلية طب الأسنان – جامعة عين شمس 2019م

Acknowledgment

First of all, I would like to express my deep gratitude to **ALLAH** for his care and generosity throughout my life...

I would like to express my most sincere gratitude and grateful appreciation to *Prof. Mushira M. Dahaba* Professor of Oral &Maxillofacial Radiology, Faculty Dentistry, Cairo University. It was a great honour to work under her scrupulous supervision. I was inspired by her sparking enthusiasm and valuable guidance. Her endless encouragement, great help, extreme patience, immeasurable support, will always be sincerely remembered.

I'm very grateful to *Dr. Mary Medhat Farid*, Assistant Professor of Oral Radiology and Diagnosis, Faculty of Dentistry, Ain Shams University, for her valuable advices and support through the whole work and for dedicating much of her precious time to accomplish this work.

Also, I would like to express my deepest appreciation and gratitude to *Dr. Adel Mahmoud Ali*, Professor of Internal Medicine & Rheumatology Head of Rheumatology Department, Faculty of Medicine, Ain Shams University. for his great help and valuable suggestions throughout this work.

Special thanks to all staff members of Rheumatology Department Faculty of Medicine Assuit University especially *Prof. Nihal A. Fathi*, Assistant Lecturer *Shaimaa Salah Mahmoud* and resident doctor *Esraa Mohammed Abd El razek*.

I wish to extend my deep thanks to all staff members of ORAL RADIOLOGY DEPARTMENT, Faculty of Dentistry, Ain Shams University, for their great help and cooperation.

Mostafa Mahmoud Youssef Mohamed

2019

Dedication

To the soul of my Mother

Who will live forever in my heart.

May ALLAH gather me with here in his paradise.

To my Father

Who is the candle that lights my life.

To my great brothers and sister Wael, Ahmad and Noha

Who are always my supportive and best friends in this life.

To my beloved wife Sarah

Who is the rose of my life

To my great son and sweet daughters

The best gifts from ALLAH

List of contents

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
Anatomy of temporomandibular joint	5
Temporomandibular Joint Disorders (TMD)	12
Systemic arthritides of TMJ	16
Rheumatoid arthritis	26
Rheumatoid Factor	37
Anti–Cyclic Citrullinated Peptide Antibodies	40
• DAS28	42
Radiographic Assessment of the TMJ in Rheumatoid Arthritis Patients	43
Different modalities used for assessment of the TMJ	45
AIM OF THE STUDY	54
PATIENTS AND METHODS	
Patient Selection	55
Methods of Evaluation	58
SAMPLE CASE PRESENTATION OF RA GROUP	66
RESULTS	
DISCUSSION	
SUMMARY AND CONCLUSION	
REFERENCES	97
Arabic summary	

List of Tables

	Page
Table(1): Format used for collecting TMJ measurements	72
Table(2): Format used for collecting TMJ radiographic osteoarthritic changes	72
Table(3): Descriptive statistics and results of Student's t-test for comparison between base age values in the two groups	73
Table(4): Mean, standard deviation (SD) values and results of Student's t-test for comparisons between TMJ measurements in the two groups	75
Table(5): Frequencies, percentages and results of Chi-square test for comparisons between Osteoarthritic changes in the two groups	77
Table(6): Median, range values and results of Mann-Whitney U test for comparisons between RF levels in Rheumatoid patients with and without signs of Osteoarthritic changes	78
Table(7): Median, range values and results of Mann-Whitney U test for comparisons between ACCP levels in Rheumatoid patients with and without signs of Osteoarthritic changes	81
Table (8): Median, range values and results of Mann-Whitney U test for comparisons between DAS28 score in Rheumatoid patients with and without signs of Osteoarthritic changes	84

	Page
Table (9): Mean, standard deviation (SD) values and results of one-way ANOVA test for comparisons between TMJ measurements in Rheumatoid patients with different disease activities	86
Table (10): Frequencies, percentages and results of Fisher's Exact test for the association between disease activity in Rheumatoid patients with and without signs of Osteoarthritic changes	88

List of Figures

Figure	Page	
Figure (1): Diagram of TMJ anatomy in lateral section		
Figure (2): Diagram of TMJ anatomy in lateral section		
Figure (3): Shoulder joint examination		
Figure (4): Elbow joint examination		
Figure (5): Wrist joint examination		
Figure (6): Hand joints examination		
Figure (7): Knee joint examination		
Figure (8): Erosion in condylar head and erosion in fossa		
Figure (9): Flattening in condylar head and flattening in fossa		
Figure (10): Osteophytes		
Figure (11): Subchondral cyst		
Figure (12): Corrected MPR views of right side TMJ		
Figure (13): Corrected MPR views of left side TMJ		
Figure (14): On the Corrected coronal view, mediolateral dimension and height were measured		
Figure(15): On the corrected sagittal view, antero-posterior dimension was measured	68	
Figure (16): Subchondral cyst was seen on corrected sagittal view of the right condyle	69	
Figure (17): Erosion of condylar head was seen on corrected sagittal view of the right condyle	69	
Figure (18): On the Corrected coronal view, mediolateral dimension and height were measured	70	
Figure(19): On the corrected sagittal view, antero-posterior dimension was measured	70	

	Figure	Page
_	f condylar head was seen on corrected sagittal eft side condyle	71
_	of condylar head was seen on corrected sagittal eft side condyle	71
	representing distribution of disease activity in oid patients	74
	representing mean and standard deviation values measurements in the two groups	76
	agram representing inverse correlation between height and ACCP level	80
_	agram representing inverse correlation between osterior joint width and ACCP level	80
9 , ,	agram representing inverse correlation between teral joint width and DAS28 score	83
• , ,	agram representing inverse correlation between osterior joint width and DAS28 score	83
	representing median and range values for DAS28 Rheumatoid patients with and without flattening ar head	85
_	representing median and range values for DAS28 Rheumatoid patients with and without flattening d fossa	85
for Anter	representing mean and standard deviation values to-posterior width in Rheumatoid patients with disease activities	87
_	representing disease activities in Rheumatoid with and without radiographic Osteoarthritic	89

List of Abbreviations

Abbreviation	Mean
2D	Two dimensional
3D	Three dimensional
ACCP	Anti-cyclic citrolinated peptides
CBCT	Cone Beam Computed Tomography
CRP	C-reactive protein
CT	Computed Tomography
DICOM	Direct information and communication in medicine
DJD	Degenerative Joint Disease
ESR	Erythrocyte sedimentation rate
ID	Internal Derangements
LPM	Lateral pterygoid muscle
MFPD	Myofacial Pain Disorder
MRI	Magnetic Resonance Imaging
OA	Osteoarthritis
RA	Rheumatoid arthritis
RF	Rheumatoid factor
TMD	Temporomandibular disorder
TMJ	Temporomandibular Joint
TPA	Temporal posterior attachment

Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disorder of unknown etiology that primarily involves the joints but can also cause multiple extra-articular manifestations. RA is one of the most common autoimmune diseases, affecting 1–1.5% of the population worldwide. It is characterized by persistent synovitis, systemic inflammation, and autoantibodies (particularly to rheumatoid factor and citrullinated peptide). The hallmark feature of the disease is persistent polyarthritis (synovitis) that may affect many synovial joints. (1)

Inflammatory arthritis in RA is usually associated with an elevated erythrocyte sedimentation rate (ESR) and/or C-reactive protein (CRP) that correlates with disease activity. However, baseline ESR and CRP do not discriminate well between RA and non-RA, and do not predict persistent (erosive) disease.⁽²⁾

Rheumatoid factor (RF) is of high importance for the diagnosis of RA and the prediction of outcome. RF positivity is one of the seven ACR 1987 classification criteria for RA. The diagnostic value of the presence of RF has been studied for the classical latex fixation and Rose-Waaler agglutination assays, and also for the enzyme-linked immune-sorbent assays (ELISAs) for quantitative detection of RF iso-types IgG, IgA and IgM. IgM RF discriminates well between RA and non-RA conditions and predicts persistent disease. (2)

The discovery of artificial cyclic citrullinated peptides mimicking RA-specific epitopes paved the way for the development of readily available immunological tests. Anti-cyclic citrullinated peptides (ACCP) antibodies are as sensitive as, but more specific than, RF iso-types for diagnosing RA and can also be found in RF-negative RA patients. (2)

Most recent studies have clearly shown the excellent diagnostic performance regarding diagnostic sensitivity, and specificity of ACCP. However, reported diagnostic sensitivities and specificities ranged from 39% to 94% and 81% to 100%, respectively. (2)

Multiple studies confirmed the association of ACCP antibodies with radiographic progression in RA. ACCP occur in RA susceptible healthy individual's years prior to disease onset and can predict disease development. In contrast, the usefulness of ACCP for monitoring RA patients: particularly during treatment, as well as their relation to disease activity still remains a controversial issue.⁽²⁾

The "Disease Activity Score" (DAS) is a combined index that has been developed in Nijmegen in the eighties to measure the disease activity in patients with (RA). It has been extensively validated for its use in clinical trials in combination with the European League Against Rheumatism (EULAR) response criteria. Its easy use makes it also possible to collect valuable

information about the disease activity of any patient in daily clinical practice. (3)

Evaluation of response to a treatment can be made much easier and more objective using the DAS or DAS28 by assessing the number of swollen and tender joints and measuring the ESR. The DAS will then provide a number between 0 and 10, indicating how active the RA is at this moment.⁽⁴⁾

Joints affected include involvement of the hands, elbow, shoulder, upper cervical vertebrae (atlantoaxial articulation), knee, the ankle joint (tibial-talar articulation), and the hip.⁽⁵⁾

The temporomandibular joint (TMJ) is one of the least joints affected as it may be affected in about 10 % of RA cases. TMJ involvement is especially important in RA as these conditions may lead to severe disability.⁽⁶⁾

radiographic Conventional **TMJ** projections like transpharyngeal, transcranial, panoramic radiograph, conventional tomographic sections of TMJ may be adequate in a number of clinical situations. However, there are bony alterations that occur in these disorders like erosions, osteophytes, pneumatization of articular eminence that are difficult to be detected using conventional radiographs due to overlapping of the anatomic structures. This warrants the use of advanced imaging modalities Resonance **Imaging** (MRI), like Magnetic arthrography,

conventional Computed Tomography (CT) and Cone Beam Computed Tomography (CBCT).⁽⁷⁾

CBCT is an increment in the ever-expanding horizon of clinical CT technologies. The first prototype clinical CBCT scanner was used in 1982 at Mayo Clinic. The commercial CBCT scanners made their entry almost a decade after the initial adaptation for angiographic applications. Ever since several CBCT systems have evolved that have been extensively used in the field of medical clinical imaging.⁽⁷⁾

An important advantage of CBCT imaging of TMJ is that it allows accurate measurements of the volume and surface of the condyle. These measurements are extremely advantageous in clinical practice when treating patients with TMJ dysfunctions.⁽⁷⁾

None of the previous studies assessed the TMJs in RA patients in relation to RA serological studies or DAS. That's why we deemed it necessary to throw the light on the exact effect of disease activity and serological results on TMJs of RA patients.