

Ain Shams University Faculty of Engineering Design and Production Engineering

Dynamic and Static Characterizations of Biodegradable Polymer Composites

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Mohamed Hamouda Darwesh Mostafa Al Haron

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2013

Supervised By
Associate Prof. Rawia Hamouda
Prof. Mahmoud Farag

Cairo -(2018)

Ain Shams University Faculty of Engineering Design and Production Engineering

Dynamic and Static Characterizations of Biodegradable Polymer Composites

by

Mohamed Hamouda Darwesh Mostafa Al Haron

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2013

Supervising' Committee

Name and Affiliation	Signature
Associate Prof. Rawia M. Hamouda Ain Shams University	
Prof. Mahmoud M. Farag The American University in Cairo	

Date: / /

Ain Shams University

Faculty of Engineering

Design and Production Engineering

Dynamic and Static Characterizations of Biodegradable Polymer Composites

by

Mohamed Hamouda Darwesh Mostafa Al Haron

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2013

Examining Committee

Name and Affiliation	Signature
Prof. Ihab Fouad Abader Cairo University	
Prof. Nahed El Mahallawy Ain Shams University	
Associate Prof. Rawia M. Hamouda Ain Shams University	

Date: / /

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature

Mohamed Hamouda Darwesh Mostafa Al Haron

Date:

Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr. Mahmoud Farag for helping me in every step along the way. I would not have been able to accomplish this thesis without his continuous support and guidance.

I am also indebted to Dr. Rawia Hamouda for supporting and guiding me from the moment I was an undergraduate student and participant in her lectures courses till the moment that I became a graduate student. Moreover, I would like to thank the members of my thesis committee, Dr. Ihab Fouad Abader and Dr. Nahed El Mahallawyfor their gracious participation and for their constructive criticism.

I also wish to acknowledge the financial support by the QATAR Foundation for fully funding this project and Technology Research Center (YJ-STRC) at the American University in Cairo for allowing me to use its facilities.

I would like to thank all the members of the Polymer Lab for being very helpful and supportive.

Finally, I owe special gratitude to my parents, my sisters and brothers, my school teachers and my friends for their continuous and unconditional help and support. Special thanks to Aya Adel and Menna Adel for their guidance and support.

Mohamed H. Al Haron

Researcher Data

Name : Mohamed Hamouda Darwesh Mostafa Al Haron

Date of birth : 05/03/1991

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Design and Production Engineering.

University issued the : Ain Shams University

degree

Date of issued degree : 2013

Current job : Research Assistant at the American University

in Cairo

Product Development Engineer at Si-Ware

Company

Thesis Summary

Worldwide concerns over disposal of petroleum derived polymers led to an increase in governmental regulations and environmental awareness. Using composite materials consisting of natural fibers and biodegradable plant-based polymers provides environmental benefits in terms of raw material utilization and safe disposal at the end of their life cycle. These natural composite materials are already being used in some applications such as car doors, sandwich plates, interior paneling, and tubes. Starch is regarded as a promising biodegradable material owing to its wide availability and low cost. However, starch has relatively low mechanical properties and tends to absorb moisture. These drawbacks can be controlled by adding fibers into starch matrix to form composites. Several types of natural cellulose fibers such as jute, sisal, date palm, and hemp have been used as reinforcements for starch-based composites.

This work examines the effect of DPF content and moisture absorption on the tensile and impact strengths of starch matrix composites. In addition, the fatigue behavior of thermoplastic starch (TPS) reinforced with short date palm fibers (DPFs) were investigated under bending loading conditions and the power law model was used to describe the fatigue damage behavior.

Biodegradable composites of starch—date-palm fibers were prepared by first plasticizing corn starch and chemically treating the fibers before being formed by compression molding. The effect of fiber content on mechanical properties was examined and it was found that tensile strength and Young's modulus for 50 weight percent (wt%) fiber composite improved by 7 and 12.5 times, respectively, compared to thermoplastic starch. Impact strength showed similar behavior and improved by 4.3 times for 50 wt% fiber composites. At higher fiber content the matrix was insufficient to cover the fibers, causing the mechanical properties to deteriorate. The results also showed that exposure to moisture resulted in progressive decrease in mechanical properties with increasing moisture absorption. It was found that after reaching moisture saturation, the retained tensile strengths were about one-third the starting values and the retained impact strengths were about two-thirds the starting values.

The fatigue strength of 50 wt% fiber content was the highest compared to other composites. The alternating stress at which the composites lasted for 10^7 cycles was about 16% of the flexural strength. Moreover, the experimental results of the residual strengths under various fatigue cycles and of the fatigue damage index at different levels of stresses were having a good agreement with Mathematical models following the assumptions of D'Amore et al. (1996) and Mao and Mahadevan (2002).

Keywords: Biodegradable Composites, Date-Palm Fibers, Thermo-Plastic Starch, Moisture Absorption, Tensile Strength, Bending Strength, Residual Strength, Impact Strength and Fatigue Behavior.

Contents

Chapter 1		1
1. Introdu	ction and Scope of the Thesis	1
1.1. The	e New Challenge	1
1.2. The	e Environmental and Economical Impact	3
۱,۳. Bio	odegradable composites	3
1.4. Ob	jective	5
Chapter 2		6
2. Literatu	ıre Review	6
2.1. Bio	odegradable polymers	6
2.1.1.	Native Starch	7
2.1.2.	Thermoplastic Starch	8
2.1.3.	Starch Gelatinization	9
2.1.4.	Starch Plasticization	10
2.1.5.	Factors Affecting Thermoplastic Starch Properties	11
2.2. Na	tural Fibers	16
2.2.1.	Date Palm Fibers	20
2.2.2.	Classification of Date Palm Fibers	20
2.2.3.	Natural Fibers Mercerization	22
2.3. Co	mposites Reinforced with Natural Fibers	31
2.3.1.	Mechanical Properties	31
.,٣,٢	Water Uptake	36
2.3.3.	Biodegradation	36
Chapter 3		39
3. Objecti	ves and Work Plan	39
Chapter 4		40
4. Experin	nental Work	40
4.1. Ma	terials	40

4.1	.1.	Date Palm Fibers	40
4.1	.2.	Corn Starch Matrix	40
4.1	.3.	Others	40
4.2.	Met	thods	41
4.2	.1.	Date Palm Fibers Preparation	42
4.2	2.	Corn Starch Matrix Preparation	43
4.2	.3.	Composite Preparation	43
4.3.	Cha	nracterizations	45
4.3	.1.	Density Measurements	45
4.3	.2.	Dimension Measurements	45
4.3	.3.	Scanning Electron Microscope (SEM)	45
4.3	.1.	X-ray Diffraction (XRD)	46
4.3	.2.	Tension Test	46
4.3	.3.	Bending Test	48
4.3	.4.	Impact Test	48
4.3	.5.	Fatigue Test.	49
4.3	.6.	Moisture Uptake	51
Chapetr	5		53
5. Res	sults	and Discussion	53
5.1.	Den	sity Results	53
5.2.	Fibe	ers Dimension	54
5.3.	Mo	rphology Investigation	55
5.3	.1.	Fibers Morphology	55
5.3	.2.	Starch Morphology	56
5.4.	X-ra	ay Diffraction (XRD)	57
5.5.	Ten	sion Test Results	62
5.6.	Ben	nding Test Results	65
5.7.	Imp	eact Test Results	68
5.8.	Fati	gue Results	71

5.8	.1. Experimental Results	71
5.8	.2. Model Prediction	74
5.9.	Moisture Absorption	77
Chapter	6	82
6. Co	nclusions and Future Work	82
6.1.	Conclusion	82
6.2.	Future Work	84
Reference	ces	85

List of Figures

Figure 1.1 Fiber-reinforced plastic composites used in 2002— 2.28x10 ⁹
lb[2]
Figure 2.2 Native starch chemical and schematic representations; (a) linear
amylose; (b) branched amylopectin [9]
Figure 2.3 Schematic representations of starch gelatinization and
retrogradation [13]
Figure 2.4 Flexural strength and flexural modulus of plasticized SPS [19]. 12
Figure 2.5 Strain at break (ε_b) and nominal stress at break (σ_b) versus water
content during compression molding (W) for potato, corn, wheat and waxy
corn starch [24]
Figure 2.6 Structure of natural fiber [34]
Figure 2.7 Photograph of date palm plant [39]
Figure 2.8 SEM morphology for untreated DPF [36]
Figure 2.9 SEM for DPF that treated with (a) 0.5% NaOH, (b) 1% NaOH, (c)
1.5% NaOH, (d) 2.5% NaOH and (e) 5% NaOH [36]
Figure 2.10 SEM micrographs for DPF treated with (a) 0.3 N, (b) 0.9 N and
(c) 1.6 N HCl [36]
Figure 2.11 SEM images of typical natural MDPSF [41]
Figure 2.12 SEM investigation of untreated DPFs [5]
Figure 2.13 SEM investigation of treated DPFs [5]
Figure 2.14 Effect of NaOH treatment on (a) tensile strength and (b)
Young's modulus of DPF [36]
Figure 2.15 Tensile testing data of single fibre treated with different NaOH
concentrations [42]
Figure 2.16 Thermogravimetric curves of (A) Raw and (B) Soda solution
(5%) date palm fibres [36]
Figure 2.17 Composites biodegradation; (a) flax composite, (b) DPFs
composite[5]
Figure 3.1 Objective and work strategy
Figure 4.1 The preparation steps of DPF
Figure 4.2 Home-use mixer with the heating coil
Figure 4.3 The composite under hydraulic press
Figure 4.4 The composite preparation steps
Figure 4.5 Densitometer
Figure 4.6 (a) fiber tensile specimen in (mm); (b) fiber fixation after tensile
test. 47

Figure 4.7 Universal testing machine
Figure 4.8 The bending test samples
Figure 4.9 (a) fatigue bending mechanism; (b) bending fatigue machine
(HSM20)
Figure 4.10 The fatigue test samples 50
Figure 4.11 The humidity chamber with samples inside it
Figure 5.1 Diameter measurement of untreated fibers
Figure 5.2 Diameter measurement of treated fibers
Figure 5.3 SEM image of untreated date palm fiber 55
Figure 5.4 SEM images of NaOH treated date palm fibers 56
Figure 5.5 SEM images of native corn starch
Figure 5.6 SEM images of thermoplastic starch (TPS) 57
Figure 5.7. XRD pattern for untreated and treated fibers
Figure 5.8. XRD pattern for native and thermoplastic starch granules 59
Figure 5.9. XRD pattern for different fiber content composites
Figure 5.10 Effect of DPF content on the tensile properties of TPS
composites; (a) Tensile strength, (b) Tensile modulus
Figure 5.11 SEM investigation of 50 wt% DPF TPS-based composite 63
Figure 5.12 SEM investigation of 70 wt% DPF TPS-based composite 63
Figure 5.13 Effect of DPF content on the compatibility factor of TPS
composites
Figure 5.14 Example of stress-strain curves of different fiber content
composites
Figure 5.15 Flexural Strength and modulus of different fiber content
composites
Figure 5.16 SEM images of 20 wt% (a,b), 50 wt% (c,d), and 70 wt% (e,f)
composites67
Figure 5.17 SEM images for 20wt% composite showing: (a) lack of fibers
(b) good adhesion
Figure 5.18 SEM images for 50wt% composite showing: (a) fibers pull out
(b) gab between fiber and matrix
Figure 5.19 Graphs showing the residual Strength vs number of cycles for
different fiber content composites at deflection $d = 4 \text{ mm.} \dots 71$
Figure 5.20 SEM image for 50 wt% after (a) 10^4 and (b) 10^6 cycles
Figure 5.21 SEM image indicating the crack initiation and propagation for 20
wt% composite at $N = 105$ cycles and $d = 4$ mm
Figure 5.22 S-N Curve for 50 wt% DPFs reinforced TPS
Figure 5.23 Experimental and model prediction residual strength of 50 wt%
composite tested at different deltas

List of Tables

Table 2.1 Characteristic of native starch [11].	8
Table 2.2 PHB/starch thermal stability [20]	12
Table 2.3 Physical, mechanical and chemical composition properties of	of
different natural fibres as compared to glass and wood [35] 1	19
Table 2.4 Diameter and elastic properties for some plant fibers [4]	22
Table 2.5 Time for complete biodegradation for various materials [4] 3	37
Table 5.1 Theoretical and experimental densities of different fiber conte	nt
composites5	54
Table 5.2 Diameters of untreated and treated DPF5	54
Table 5.3 % Crystallinity for DPF reinforced TPS with different fibe	er
content6	51
Table 5.4 Variation of mechanical properties with fiber content in starch	h-
DPF composites	58