

DEVELOPMENT OF AN ANALYTICAL MODEL FOR CYCLIC STEAM INJECTION AND STEAM DRIVE METHODS

By

Mohamed Fathy Salem Atwa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

DEVELOPMENT OF AN ANALYTICAL MODEL FOR THE PREDICTION OF THE PERFORMANCE OF BOTH CYCLIC STEAM INJECTION AND STEAM DRIVE METHODS

By **Mohamed Fathy Salem Atwa**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Mohamed Helmy Sayyouh	Prof. Dr. Ahmed Hamdy El Banbi
Professor	Professor
Petroleum Engineering Department	Petroleum Engineering Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Dr. Mohar	ned Samir
Operations General I	Manager, Sahara Oil

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

and Gas for Exploration and Production

DEVELOPMENT OF AN ANALYTICAL MODEL FOR THE PREDICTION OF THE PERFORMANCE OF BOTH CYCLIC STEAM INJECTION AND STEAM DRIVE METHODS

By Mohamed Fathy Salem Atwa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Approved by the Examining Committee

Petroleum Corporation

Prof. Dr. Mohamed Helmy Sayyouh,	Thesis Main Advisor
Prof. Dr. Ahmed Hamdy El Banbi,	Advisor
Prof. Dr. Mahmoud Abu El Ela Mohamed,	Internal Examiner
Eng. Nabil Salah Gaber, - Deputy chief executive officer for production	External Examiner ion - Egyptian General

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Mohamed Fathy Salem Atwa

Date of Birth: 15/10/1991 **Nationality:** Egyptian

E-mail: Mo.fathy.salem@gmail.com

Phone: 00201095177176 **Address:** 13 El Marwa, Tur Sinai

Registration Date: 1/10/2014 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Petroleum Engineering Department

Supervisors:

Prof. Dr. Mohamed Helmy Sayyouh Prof. Dr. Ahmed Hamdy El Banbi

Dr. Mohamed Samir

Examiners:

Eng. Nabil Salah Gaber (External examiner)

- Deputy chief executive officer for production -

EGPC

Prof. Dr. Mahmoud Abu El Ela Mohamed (Internal

examiner)

Porf. Dr. Mohamed Helmy Sayyouh(Thesis main

advisor)

Porf. Dr. Ahmed Hamdy El Banbi (Advisor)

Title of Thesis:

Development of an Analytical Model for the Prediction of the Performance of both Cyclic Steam Injection and Steam Drive Methods.

Key Words:

EOR; Cyclic Steam Injection; Steam Drive; Analytical Predictive Model; Heavy Oil Recovery

Summary:

A computer program has been developed to predict the performance of both cyclic steam injection and steam drive methods. The program uses methods for the first time along with those found in the literature for cyclic steam injection method. In case of steam drive, a model was developed. The program was validated against ECLIPSE along with actual field data. It can predict the performance with acceptable accuracy in shorter time than numerical simulators with fewer input data.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Fathy Salem Atwa	Date:
Signature:	

Dedication

I dedicate this work to my parents; Fathy Salem and Mona Abd El Aziz.

Acknowledgments

The completion of this work is attributed to the ornate and harmonious mixture of major and minor roles of many people and entities. Therefore, I'd like to narrate and acknowledge each one of them as a sign of my deeply felt waves of gratitude for their unbounded support.

Walking through this research, lots of hardships would have caused depression to obstruct its completion. My supervisors, however, didn't let that take over me at any point of the research period. Despite the concrete dead-ends we used to hit, they have always pushed me through and taught me to fly over and steer around the impenetrable walls. Professor Mohamed Helmy Sayyouh has given this thesis its beating heart by relentlessly igniting my passion whenever it went dim. His guidance and pieces of advice have illuminated a distinct path for every technical problem. Professor El Sayed Ahmed El Tayeb has always brought everything to perfection. I cannot count how many times my presentations and documents have received compliments because of his acute contemplation and directions. His ideas have paved the path for structuring the research point and granting it a value for its generalized nature. Besides, Professor Ahmed El Banbi and Dr. Mohamed Samir have fueled this work by their exquisite experience and scientific mindset. Scheming this work, engraving its details and drawing its milestones were forged through their thoughtful ideas. Pridefully, I have dealt with such ideas as priceless gifts from a master of that sort of gifts.

Other professors have, also, participated in portraying this research. Among them, I'd specially want to thank Professor Mahmoud Abu El Ela who has been the best mentor one could attain. No matter what time I reached out to him nor the effort I acquired, he wholeheartedly gave it all and far more. One shall always be indebted to him for his faithfulness and righteousness.

Additionally, I'd want to provide my thanks to Schlumberger. They have provided us with the necessary software used to validate this work. Their remarkable feet in this area resembled a challenging mount that we sought to equate in quality or even surpass.

Finally, words will not suffice to credit my parents the praise they deserve. Their all-time-encouragement didn't diminish at any moment of my life rather than during this research. Everything written here is owing to their mighty ability to strengthen my will at all times. In addition, my siblings and close friends have never let down at assisting me with everything from the technical information I needed to their glinted messages of encouragement. They partake in the output of this research with their pure presence and irreplaceable friendship.

Table of Contents

ACKNOWLE	DGMENTS	I
DEDICATION	٠	II
TABLE OF CO	ONTENTS	IV
LIST OF TAB	LES	VII
LIST OF FIGU	URES	VIII
NOMENCLAT	ΓURE	X
GDEEK		VI
ABBREVIATIO	ONS	XII
ABSTRACT		XIII
CHAPTER 1:	INTRODUCTION	1
CHAPTER 2:	LITERATURE REVIEW	4
2.1.	Introduction	4
2.2.	THERMAL EOR METHODS	4
2.3.	METHODS DESCRIPTION	
2.3.1.	Cyclic Steam Injection	
2.3.2.	Steam Drive	
2.4.	ANALYTICAL PREDICTIVE MODELS	
2.4.1.	Steam Cycling Analytical Predictive Models	
2.4.1.1.	Boberg and Lantz Model	
2.4.1.2.	Towson and Boberg Model	
2.4.1.3. 2.4.1.4.	Davidson, Miller and Mueller Model	
2.4.1.4. 2.4.1.5.	Bentsen and Donohue Model	
2.4.1.6.	Kuo, Shain and Phocas Model	
2.4.1.7.	Closmann, Ratliff and Truitt Model	
2.4.1.8.	Jeff Jones Model (1977)	
2.4.1.9.	Gontijo and Aziz Model	15
2.4.1.10.	Gros, Pope and Lake Model	
2.4.1.11.	Sylvester and Chen Model	16
2.4.1.12.	Gozde, Chhina and Best Model	16
2.4.1.13.	Jeff Jones Model (1992)	
2.4.1.14.	Rivas and Boccardo Model	
2.4.1.15.	Buitrago and Boccardo Model	
2.4.2.	Steam Drive Analytical Predictive Models	
2.4.2.1.	Marx and Langenheim Model	
2.4.2.2.	Neuman Model	
2.4.2.3. 2.4.2.4.	Jeff Jones Model (1981)	
2.4.2.4. 2.4.2.5.	Farouq Ali Model	
2.4.2.6.	Closmann Model	
2.4.2.7.	Chandra and Mamora Model	

2.5.	AVAILABLE COMPUTER PROGRAMS	21
2.6.	CONCLUDING REMARKS	22
2.6.1.	Comparison between Cyclic Steam Injection Models	
2.6.2.	Comparison between Steam Drive Models	
	STATEMENT OF THE PROBLEM, OBJECTIVE, AND	
METHODOL	OGY	28
3.1.	STATEMENT OF THE PROBLEM	28
3.2.	Objective	28
3.3.	Methodology	
CHADTED 4	METHODOLOGY IMPLEMENTATION	
CHAPIER 4	METHODOLOGY IMPLEMENTATION	30
4.1.	Introduction	30
4.2.	PROGRAM FORMULATING EQUATIONS AND METHODS	30
4.2.1.	Cyclic Steam Injection Calculations	30
4.2.1.1.	Wellbore Losses Calculations	
4.2.1.2.	Steam Quality Calculations	32
4.2.1.3.	Heated Radius Calculations	33
4.2.1.4.	Heated Zone Average Temperature Calculations	34
4.2.1.5.	Correction Factor Calculations	36
4.2.1.6.	Flow Rate Calculations	36
4.2.1.7.	Saturation Calculations	37
4.2.1.8.	Remaining Heat Calculations	37
4.2.2.	Subroutines' Methods Selection Criteria	38
4.2.3.	Methods Used to Solve Cyclic Steam Injection Models' Drawbacks	38
4.2.4.	Steam Drive	
4.2.4.1.	Wellbore Losses and Steam Quality Calculations	
4.2.4.1.	Steam Zone Thickness and Area Calculations	
4.2.4.2.	Oil Zone Average Temperature	
4.2.4.4.	Oil Flow Rate Calculations	
4.2.4.5.	Saturation Calculations	
4.3.	PROGRAM STRUCTURE	
4.4.	INPUT DATA	
4.4.1.	Cyclic Steam Injection Input Data	
4.4.1.1.	Well Properties.	
4.4.1.2.	Flow Properties	
4.4.1.3.	Thermal Properties	
4.4.1.4.	Rock and Fluid Properties	
4.4.1.5.	Operating Conditions	
4.4.2.	Steam Drive Input Data	
4.4.2.1.	Reservoir Properties	
4.4.2.2.	Flow Properties	
4.4.2.3.	Thermal Properties	
4.4.2.4.	Rock and Fluid Properties	
4.4.2.5.	Operating Conditions	
4.5.	OUTPUT DATA	51
4.6.	PROGRAMMING LANGUAGE	51
CHAPTER 5	RESULTS AND DISCUSSION	52
5.1.	Introduction	52
5.2	PROGRAM VALIDATION	<i>52</i> 52

5.2.1.	Cyclic Steam Injection	52
5.2.1.1.	Cyclic Steam Injection Hypothetical Cases	52
5.2.1.2.	Cyclic Steam Injection Field Applications	62
5.2.2.	Steam Drive Model	72
5.2.2.1.	Steam Drive Hypothetical Cases	72
5.2.2.2.	Steam Drive Field Applications	76
5.3.	DISCUSSION	80
CHAPTER 6	: CONCLUSIONS AND RECOMMENDATIONS	81
6.1.	Conclusions	81
6.2.	RECOMMENDATIONS	82
REFERENCE	ES	83
APPENDIX A	A: WELLBORE LOSSES CALCULATIONS	86
APPENDIX E	B: STEAM QUALITY CALCULATIONS	88
APPENDIX (C: HEATED RADIUS CALCULATIONS	90
APPENDIX I): AVERAGE TEMPERATURE CALCULATIONS	94
APPENDIX E	E: FLOW RATE CALCULATIONS	97
APPENDIX F	F: STEAM DRIVE MODEL	99
APPENDIX (G: PROGRAM MANUAL	101
الملخص الملخص		

List of Tables

Table 2.1: Steam soak subroutines	24
Table 2.2: Comparison between steam soak models' sub-routines	25
Table 2.3: Steam drive models' differences	26
Table 4.1: Wellbore losses calculations methods	
Table 4.2: Steam quality calculations methods	33
Table 4.3: Heated radius calculations methods	35
Table 4.4: Heated zone average temperature calculations methods	36
Table 4.5: Correction factor calculations methods	37
Table 4.6: Remaining heat calculations methods	38
Table 4.7: Subroutines' selection criteria	39
Table 4.8: Developed steam drive model features	42
Table 5.1: Input data of cyclic steam injection hypothetical Case (1)	53
Table 5.2: Operating conditions of cyclic steam injection hypothetical Case (1)	53
Table 5.3: Results of the cyclic steam injection hypothetical Case (1)	55
Table 5.4: Results of cyclic steam injection hypothetical Case (3)	62
Table 5.5: Midway Sunset field input data	63
Table 5.6: Midway Sunset field operating conditions	63
Table 5.7: Midway Sunset results	
Table 5.8: Input data of Huntington Beach field	69
Table 5.9: The operating conditions of Huntington Beach field	69
Table 5.10: Huntington Beach results	70
Table 5.11: Input data of Bolivar Coast of Lake Maracaibo field	71
Table 5.12: The operating conditions of Bolivar Coast of Lake Maracaibo field	71
Table 5.13: Input data of the steam drive hypothetical Case (1)	73
Table 5.14: Input data of Bolivar Coalinga	76
Table 5.15: Input data of Kern San Joaquin field	78
Table 5.16: Input data of Kern Canfield field	79

List of Figures

Figure 2.1: Oil viscosity reduction with temperature	5
Figure 2.2: Relative permeability changes due to heating	5
Figure 2.3: Cyclic steam stages	
Figure 2.4: Formation of two different zones inside the reservoir	7
Figure 2.5: Reservoir zones during steam drive process	
Figure 2.6: Oil height in the hot and cold zones by Towson and Boberg	. 10
Figure 2.7: Different zones formed inside the reservoir by Davidson et al	. 11
Figure 2.8: Production stages as mentioned by Jones	
Figure 2.9: Reservoir zones during steam drive in Miller and Leung model	
Figure 2.10: Reservoir zones during steam drive in Closmann model	
Figure 4.1: Steam displacing oil out from the hot zone during the injection stage	
Figure 4.2: Oil flows back during the production stage	
Figure 4.3: Calculations sequence for a single cycle of steam soaking	
Figure 4.4: Different heat losses during injection stage in cyclic steam	
Figure 4.5: Steam zone growth before breakthrough	
Figure 4.6: Steam zone growth after breakthrough	
Figure 4.7: Calculations sequence of the new steam drive model	
Figure 4.8: Cyclic steam injection flow chart	
Figure 4.8: Cyclic steam injection flow chart (Continued)	
Figure 4.8: Cyclic steam injection flow chart (Continued)	
Figure 4.8: Cyclic steam injection flow chart (Continued)	
Figure 4.9: Steam drive flow chart	
Figure 5.1: Oil rate comparison for cyclic steam injection hypothetical Case (1)	
Figure 5.2: Cumulative oil production comparison for cyclic steam injection	
hypothetical Case (1)	54
Figure 5.3: Cumulative water rate comparison for cyclic steam injection hypothetica	
Case (1)	
Figure 5.4: Cumulative oil production per cycle comparison for cyclic steam injection	
hypothetical Case (1)	
Figure 5.5: Cumulative water production per cycle comparison for cyclic steam	. 55
injection hypothetical Case (1)	56
Figure 5.6: Oil rate comparison for cyclic steam injection hypothetical Case (2)	
Figure 5.7: Cumulative oil production comparison for cyclic steam injection	. 57
hypothetical Case (2)	57
Figure 5.8: Water rate comparison for cyclic steam injection hypothetical Case (2)	
Figure 5.9: Cumulative water production comparison for cyclic steam injection	. 50
hypothetical Case (2)	58
Figure 5.10: Oil rate comparison for cyclic steam injection hypothetical Case (3)	
Figure 5.11: Cumulative oil production comparison for cyclic steam injection	. 33
hypothetical Case (3)	60
Figure 5.12: Water rate comparison for cyclic steam injection hypothetical Case (3).	
Figure 5.12: Water rate comparison for cyclic steam injection hypothetical case (3). Figure 5.13: Cumulative water production comparison for cyclic steam injection	. 00
	<i>C</i> 1
hypothetical Case (3)	
Figure 5.14: Cumulative oil production comparison for Midway Sunset field	
Figure 5.15: Oil production comparison for Midway Sunset field	
Figure 5.16: First cycle of Midway Sunset field	. 05

Figure 5.17: Second cycle of Midway Sunset field	65
Figure 5.18: Third cycle of Midway Sunset field	66
Figure 5.19: Forth cycle of Midway Sunset field	66
Figure 5.20: Fifth cycle of Midway Sunset field	67
Figure 5.21: Sixth cycle of Midway Sunset field	67
Figure 5.22: Seventh cycle of Midway Sunset field	68
Figure 5.23: Oil production rate comparison for Huntington Beach field	70
Figure 5.24: Oil rate comparison for Bolivar Coast of Lake Maracaibo field	72
Figure 5.25: Cumulative oil production rate for steam drive hypothetical Case (1)	73
Figure 5.26: Oil production rate for steam drive hypothetical Case (1)	74
Figure 5.27: Cumulative oil for steam drive hypothetical Case (2)	75
Figure 5.28: Oil production rate for steam drive hypothetical Case (2)	75
Figure 5.29: Oil rate comparison for Coalinga field	77
Figure 5.30: Oil rate comparison for Kern San Joaquin field	78
Figure 5.31: Oil rate comparison between program and Kern Canfield field	79

Nomenclature

Symbol	Representation	Unit
A_{st}	Steam zone are	ft^2
C_{avg}	Average oil compressibility	psi ⁻¹
C_{o}	Oil specific heat	Btu/lb. °F
C_{r}°	Dry rock specific heat	Btu/lb. °F
$C_{\mathbf{w}}$	Water specific heat	Btu/lb. °F
D	Depth	ft
f_p	Fraction of injected heat produced	Fraction, Dimensionless
H	Thickness	ft
h_{fs}	Specific enthalpy of liquid water at steam	
13	temperature	Btu/lb
h_{fr}	Specific enthalpy of liquid water at	
	formation temperature	Btu/lb
H_{last}	Remaining heat from the previous cycle	Btu
H_{loss}	Heat losses	Btu
h_{ps}	Pump shoe depth	ft
h _{st}	Average steam zone thickness	ft
h_{static}	Static fluid level	ft
H _{st}	Steam injected heat	Btu
k	Permeability	md
k_{ann}	Annulus thermal conductivity	Btu/ft.day.°F
\mathbf{K}_{f}	Formation thermal conductivity	Btu/ft.day.°F
k_{ins}	Insulation thermal conductivity	Btu/ft.day.°F
K_{ov}	Overburden thermal conductivity	Btu/ft.day.°F
k_{ro}	Oil relative permeability	Fraction, Dimensionless
k_{rw}	Water relative permeability	Fraction, Dimensionless
$L_{\mathbf{w}}$	Wellbore losses	Btu
$L_{\mathbf{w}}'$	Wellbore losses per feet	Btu/ft
$L_{\mathbf{v}}$	Specific enthalpy of liquid water at average	
	heated zone temperature	Btu/lb
M_{o}	Oil heat capacity	Btu/ft ³ .°F
M_t	Total volumetric heat capacity	Btu/ft ³ .°F
$M_{\rm w}$	Water heat capacity	Btu/ft ³ .°F
P'	Average reservoir pressure	psi
$P_{\mathbf{f}}$	Initial formation pressure	psi
$P_{\mathbf{h}}$	Maximum bottomhole flowing pressure	psia
P_{i}	Steam injection pressure	psia
P_{wf}	Downhole pressure	psi
q_o	Oil production rate	STB/day
Q_{max}	Maximum amount of supplied heat	Btu
Q_{st}	Steam injection rate	bpd GTD / I
q_w	Water production rate	STB/day
R_c	Volumetric Heat Capacity of Rock	Btu/ft ³ .ºF
R _e	Drainage radius	ft
R_h	Heated radius	ft

R_{hi}	Initial heated radius at the beginning of the	
111	cycle	ft
r _{ic}	Casing inside radius	ft
r _{ins}	Insulation radius	ft
r_{oc}	Casing outside radius	ft
r_{ot}	Tubing outside radius	ft
$R_{\rm w}$	Wellbore radius	Ft
S_o	Oil saturation	Fraction, Dimensionless
S_{oi}	Initial oil saturation	Fraction, Dimensionless
S_{ors}	Residual oil saturation to steam	Fraction, Dimensionless
S_{orw}	Residual oil saturation to water	Fraction, Dimensionless
S_{w}	Water saturation	Fraction, Dimensionless
$S_{ m wi}$	Initial water saturation	Fraction, Dimensionless
S_{wc}	Critical water saturation	Fraction, Dimensionless
t	Time	day
T_{avg}	Heated zone average temperature	°F
T_c	Casing temperature	°F
$T_{ m f}$	Formation temperature	°F
t_{inj}	Injection period	day
T_{ins}	Insulation temperature	°F
T_{ov}	Overburden temperature	°F
T_{r}	Reservoir temperature	°F
t_{soak}	Soak period	day
T_{sur}	Surface temperature	°F
T_s	Steam temperature	°F
$\mathbf{x'}$	Average downhole steam quality	Fraction, Dimensionless
x' _{surf}	Average surface steam quality	Fraction, Dimensionless
v_r	Unit solution in the radial direction	Dimensionless
V_s	Steam zone volume	ft ³
$V_{\rm spec}$	Specific volume of steam	ft ³ /lb
V_{Z}	Unit solution in the vertical direction	Dimensionless

Greek

Symbol	Representation	Unit
α	Thermal Diffusivity	ft²/day
β	Formation volume factor	Bbl/STB
Ø	Porosity	Fraction, Dimensionless
μ	Viscosity	ср
€	Emissivity	Dimensionless
${\cal E}$	Thermal Efficiency	Fraction, Dimensionless
ρ	Density	lb/ft ³
δ	Correction factor	Fraction, Dimensionless