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Abstract

Human action recognition for a given video is a difficult problem
containing many challenges ranging from partial occlusion to variations in the
action speeds and viewpoints. However, this problem is at the very core of
various systems like abnormal behavior detection, action localization and/or
online video analysis, and that is why it is a very important problem which

got the attention from many researchers in the past decades and till now.

Despite the number of studies in the literature, the action recognition
problem remains a difficult problem. Traditional approaches require a lot of
efforts to find the best combination of features not only to represent the action
in a compact form but also to handling the so many existing challenges.
Recent methodologies relied on deep learning models to learn and extract
good representation from the datasets. Although the deep learning-based
models requires a large training datasets and costly training time, this type of
models illustrated advances on several action recognition dataset. Moreover,
several techniques like transfer learning allowed faster convergence of the
accuracy by pretraining the model.

At first, a novel ranking and listing for 14 action recognition datasets is
set. The ranking is based on the number of challenges each dataset covers.
Therefore, the higher the dataset’s rank, the more realistic the dataset is,
indicating its ability to provide a realistic measurement for the models. Based
on these datasets, a comparison between the advances in traditional
approaches and deep-learning based models is illustrated. Based on this deep
survey, deep learning baselines models, namely two stream convolutional

neural network and 3D convolutional neural networks, are described. These



baseline models are almost used by all the other studies including state of the
art models.

Secondly, a novel action recognition benchmark has been set and used
to study several action recognition challenges like the change in viewpoints
and shaky videos effects using the baseline models described. Moreover, it is
used to study the overfitting problem of the deep learning models with
potential solutions.

Finally, two main techniques are suggested where both can be
integrated by the several existing action recognition models in order to
Improve the accuracy. These techniques leverage the video temporal
dimension to learn several features representing varying temporal lengths.
The first technique is called Single Temporal Resolution Single Model (STR-
SM) which suggests training the desired model on one specific temporal
resolution of the video. The temporal resolution is defined as the number of
frames for a specific amount of time. Therefore, a low temporal resolution
means that a small number of frames is used to represent the action while for
a high temporal resolution, a large number of frames is used. Therefore, a
good model that uses the STR-SM technique uses a temporal resolution that
is low enough to represent long temporal duration but also, high enough to
capture the motion details. Such technique is faster when compared to
traditional approaches as it tackles long temporal range at once with better
accuracy as it covers more information. On The second technique is called
Multi Temporal Resolution Multi Model (MTR-MM) which tackles the
problem of varying action speeds in a novel way. Applying the MTR-MM
technique on the desired model requires building several STR model versions,
each trained on a specific temporal resolution with a late fusion. This leverage
the different existing information in each temporal resolution leading to a
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better and improved accuracy. Additionally, the STR-SM and the MTR-MM
techniques are applied on 3D Convolutional Neural Network model and have

Improvements over the traditional training approach of 3.63% and 6% video-

wise accuracy respectively.
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Chapter 1 Introduction

Chapter 1. Introduction

1.1 Action Recognition and Deep Learning Overview

Action recognition is the task of identifying the kind of action presented
in the video. The action occurring in the videos vary in complexity, where
simple actions are called gestures and complex action is called activity.
Therefore, it is important to provide a clear definition for the different action
complexities.

Gesture: This is the basic motion performed by the human body parts
that have some meaning. This includes hands or legs movements like waving
hands or walking, facial expressions like closing/opening eyes and lips
movements, and head shaking. This is considered as atomic action as it has
the lowest complexity and the shortest amount of time when compared with
other action complexities.

Action: There is no standard definition for an ‘action’, however, it is
commonly understood as the movements (more than one gesture) performed
by a person that involves an interaction with another person or object. In this
context, shaking hands, swimming, and kicking a ball are good examples on
actions. They usually require orders of few seconds and might last for minutes.

Activity: It is a set of actions that occurs either simultaneous or in
sequence. Therefore, it is the most complex type of actions and is also called
event. Examples for different activities: people protesting, a team game or a
group meeting. As might be guessed, these activities usually last for long time

interval.



Chapter 1 Introduction

This thesis focuses on improving generic deep learning systems for the
‘gesture’ and ‘action’. These actions complexity covers the basic human
actions in addition to interaction with another person and or objects.

Following is a discussion of few important applications for action
recognition task to illustrate the different areas that are affected by any
advances in action recognition.

A. Video Retrieval [1]: As the number of videos on the internet is
growing, there is a tremendous need to automatically understand the content
of the video instead of relying solely on the video tags (i.e. title and
description), which might be misleading, to improve the search results quality
for the end users.

B. Automated Surveillance [2]: The surveillance in large
manufactures and governmental institutes requires security cameras that
covers the whole place to record the daily activities occurring. There is usually
a security person monitoring these videos to notify for any abnormal
behaviors and take the required decision. Automating this task would benefit
in improving the accuracy and reducing the costs for workers performing a
tedious task.

C. Human-Computer Interaction [3]: Many modern games provide
sensors like web-cameras, kinetic or Virtual Reality (VR) controllers to
capture the human action and provide a better entertaining gaming experience.
The quality of understanding the human action results in a better user
experience.

D. Video Description and Summarization [4]: Similar to video
retrieval, generating a better video description is another task that relies on

understanding the video content. Increasing such system with actions



