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           Abstract………… 

Human action recognition for a given video is a difficult problem 

containing many challenges ranging from partial occlusion to variations in the 

action speeds and viewpoints. However, this problem is at the very core of 

various systems like abnormal behavior detection, action localization and/or 

online video analysis, and that is why it is a very important problem which 

got the attention from many researchers in the past decades and till now.  

Despite the number of studies in the literature, the action recognition 

problem remains a difficult problem. Traditional approaches require a lot of 

efforts to find the best combination of features not only to represent the action 

in a compact form but also to handling the so many existing challenges. 

Recent methodologies relied on deep learning models to learn and extract 

good representation from the datasets. Although the deep learning-based 

models requires a large training datasets and costly training time, this type of 

models illustrated advances on several action recognition dataset. Moreover, 

several techniques like transfer learning allowed faster convergence of the 

accuracy by pretraining the model.  

At first, a novel ranking and listing for 14 action recognition datasets is 

set. The ranking is based on the number of challenges each dataset covers. 

Therefore, the higher the dataset’s rank, the more realistic the dataset is, 

indicating its ability to provide a realistic measurement for the models. Based 

on these datasets, a comparison between the advances in traditional 

approaches and  deep-learning based models is illustrated. Based on this deep 

survey, deep learning baselines models, namely two stream convolutional 

neural network and 3D convolutional neural networks, are described. These 
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baseline models are almost used by all the other studies including state of the 

art models. 

Secondly, a novel action recognition benchmark has been set and used 

to study several action recognition challenges like the change in viewpoints 

and shaky videos effects using the baseline models described. Moreover, it is 

used to study the overfitting problem of the deep learning models with 

potential solutions. 

Finally, two main techniques are suggested where both can be 

integrated by the several existing action recognition models in order to 

improve the accuracy. These techniques leverage the video temporal 

dimension to learn several features representing varying temporal lengths. 

The first technique is called Single Temporal Resolution Single Model (STR-

SM) which suggests training the desired model on one specific temporal 

resolution of the video. The temporal resolution is defined as the number of 

frames for a specific amount of time. Therefore, a low temporal resolution 

means that a small number of frames is used to represent the action while for 

a high temporal resolution, a large number of frames is used. Therefore, a 

good model that uses the STR-SM technique uses a temporal resolution that 

is low enough to represent long temporal duration but also, high enough to 

capture the motion details. Such technique is faster when compared to 

traditional approaches as it tackles long temporal range at once with better 

accuracy as it covers more information. On  The second technique is called 

Multi Temporal Resolution Multi Model (MTR-MM) which tackles the 

problem of varying action speeds in a novel way. Applying the MTR-MM 

technique on the desired model requires building several STR model versions, 

each trained on a specific temporal resolution with a late fusion. This leverage 

the different existing information in each temporal resolution leading to a 
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better and improved accuracy. Additionally, the STR-SM and the MTR-MM 

techniques are applied on 3D Convolutional Neural Network model and have 

improvements over the traditional  training approach of 3.63% and 6% video-

wise accuracy respectively. 
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Chapter 1. Introduction 

1.1 Action Recognition and Deep Learning Overview 

Action recognition is the task of identifying the kind of action presented 

in the video. The action occurring in the videos vary in complexity, where 

simple actions are called gestures and complex action is called activity.  

Therefore, it is important to provide a clear definition for the different action 

complexities.  

Gesture: This is the basic motion performed by the human body parts 

that have some meaning. This includes hands or legs movements like waving 

hands or walking, facial expressions like closing/opening eyes and lips 

movements, and head shaking. This is considered as atomic action as it has 

the lowest complexity and the shortest amount of time when compared with 

other action complexities.  

Action: There is no standard definition for an ‘action’, however, it is 

commonly understood as the movements (more than one gesture) performed 

by a person that involves an interaction with another person or object. In this 

context, shaking hands, swimming, and kicking a ball are good examples on 

actions. They usually require orders of few seconds and might last for minutes.  

Activity: It is a set of actions that occurs either simultaneous or in 

sequence. Therefore, it is the most complex type of actions and is also called 

event. Examples for different activities: people protesting, a team game or a 

group meeting. As might be guessed, these activities usually last for long time 

interval.   
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This thesis focuses on improving generic deep learning systems for the 

‘gesture’ and ‘action’. These actions complexity covers the basic human 

actions in addition to interaction with another person and or objects.  

Following is a discussion of few important applications for action 

recognition task to illustrate the different areas that are affected by any 

advances in action recognition.  

A. Video Retrieval [1]: As the number of videos on the internet is 

growing, there is a tremendous need to automatically understand the content 

of the video instead of relying solely on the video tags (i.e. title and 

description), which might be misleading, to improve the search results quality 

for the end users.  

B. Automated Surveillance [2]: The surveillance in large 

manufactures and governmental institutes requires security cameras that 

covers the whole place to record the daily activities occurring. There is usually 

a security person monitoring these videos to notify for any abnormal 

behaviors and take the required decision. Automating this task would benefit 

in improving the accuracy and reducing the costs for workers performing a 

tedious task.  

C. Human-Computer Interaction [3]: Many modern games provide 

sensors like web-cameras, kinetic or Virtual Reality (VR) controllers to 

capture the human action and provide a better entertaining gaming experience. 

The quality of understanding the human action results in a better user 

experience. 

D. Video Description and Summarization [4]: Similar to video 

retrieval, generating a better video description is another task that relies on 

understanding the video content. Increasing such system with actions 


