Assessment of Chemically Modified Roughened Titanium Implants in Diabetic Patients: A Clinical Study

A Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in partial fulfilment for Master Degree in Oral and Maxillofacial Surgery

By

Ahmed AbdAllah Mohammed Attia

B.D.S. (2007)

Faculty of Dentistry

Ain Shams University

(2019)

Supervisors

Mohamed Diaa Zein El Abdien Ismaeil

Professor of Oral and Maxillofacial Surgery

Dean of Faculty of Dentistry, Ain Shams University

Karim Mohamed Mahmoud AbdelMohsen

Lecturer of Oral and Maxillofacial Surgery

Faculty of Dentistry, Ain Shams University

Dedication

To my family; father, mother and sisters for their inspiration for me to be the best.

To my wife who supports me in every step throughout our life.

To my beloved son and daughter

To my supervisors who helped me to succeed and supported me during my study

Acknowledgement

I would like to thank **Dr. May Hussain Dental Photography**, for the quality of the images
and her complete professionalism.

I would also like to acknowledge the contribution of **Photon Dental Radiographic**Center, for their highly detailed CBCT images and their accurate crestal bone measurements.

Contents

Subject	Page
List of abbreviations	I
List of figures	III
List of tables	VI
Introduction	1
Review of literature	3
Aim of the study	30
Materials and methods	31
Results	52
Discussion	67
Summary and conclusion	78
Recommendations	83
References	84
Appendix 1	
Appendix 2	
Appendix 3	
Appendix 4	
Arabic summary	

List of Abbreviations

AGE : Advanced Glycation End Products.

BMP : Bone Morphogenic Proteins.

BIC : Bone Implant Contact.

CBCT : Cone Beam Computerized Tomography.

DM : Diabetes Mellitus.

HbA1c : Glycated Hemoglobin A1c.

HO : Hydroxyl.

H₂**O**₂ : Hydrogen Peroxide.

IAJ : Implant Abutment Junction.

IL-1: Interleukin One.

IL-6 : Interleukin Six.

ISQ : Implant Stability Quotient.

N : Newton.

NO : Nitric Oxide.

 O_2^- : Superoxide.

ONOO : Peroxynitrite.

PD : Periodontal Disease.

PDGF : Platelet Derived Growth Factor.

RAGE: Receptor for Advanced Glycation End

Products.

RANKL: Receptor Activator for Nuclear Factor

Kappa-B Ligand.

List of Abbreviations (Cont.)

RFA: Resonance Frequency Analysis.

ROS : Reactive Oxygen Species.

SLA : Sand Blasted, Large Grit, Acid Etched.

TGF-B: Tumour Growth Factor Beta.

TNF-α : Tumour Necrosis Factor Alpha.

μm/N : Micrometer per Newton.

List of Figures

Figure	Subject	Page
1	An implant placed in soft trabecular bone.	5
2	Over time the trabecular bone is	6
	transformed to a more cortical bone	
	structure, which results in an increased	
	stiffness of the implant–bone interface.	
3	An implant placed in dense cortical bone.	6
4	No major changes of the bone density occur	7
	over time. The interfacial voids have been	
	filled with bone.	
5	Possible alterations in bone healing in	9
	diabetic patients.	
6	Mechanism of diabetes induced	10
	osteoclastogenesis.	
7	Relation between HbA1c levels (%) and	17
	plasma glucose levels (mg/dl).	
8	Preoperative CBCT to determine adequacy	37
	of bone stock.	20
9	Preoperative HbA1c measurements to	38
	allocate each patient to one of the two	
10.11	groups.	20
10-11	Occlusal views showing crestal incision	38
10	and a full thickness mucoperiosteal flap.	20
12	Lateral view of implant osteotomies	39
13	SLActive implant stored in isotonic	39
	solution (sodium chloride) to avoid surface	
	contamination with molecules from	

Figure	Subject	Page
	atmosphere and to maintain its hydrophilic	
	surface.	
14	Lateral view showing implant insertion.	40
15	Lateral view of transducer attached to	40
	implant via screw to collect ISQ values in	
	order to measure primary stability by a	
	frequency response analyser.	
16	Occlusal view of cover screws after being	41
	screwed to implants.	
17	Occlusal view showing the flap	41
	repositioned and sutured over cover screws.	
18	Occlusal view of healing abutments after	46
	being placed for 2 weeks.	
19	Occlusal view showing impression posts	47
	with locating plastic caps screwed to the	
	implant in preparation for a closed tray	
	impression technique.	
20	An audible click confirms successful	47
	reattachment of impression posts with their	
	respective caps inside the additional	
	silicone impression.	
21	Channel drilled into crowns directly above	48
	the abutment's screw.	
22	Channel is closed by Teflon temporarily in	48
	preparation for cementation on cast.	
23	Cementation of crowns to the abutments on	49
	the cast by resin modified glass ionomer	
	cement.	

Figure	Subject	Page
24	Unscrewing of an abutment with the	49
	cemented crown through the channel to	
	remove any remaining excess cement and	
	to screw it to the implant fixture.	
25	Occlusal view of channel after closure with	50
	Teflon and composite.	
26	Measuring crestal bone levels on CBCT.	50
27	Superimposition of two CBCT images (one	51
	taken immediately after implant placement	
	and the other after one year).	
28	Bar chart representing mean and standard	57
	deviation for HbA1c in the two groups.	
29	Line chart representing changes by time in	59
	mean HbA1c levels.	
30	Bar chart representing mean and standard	61
	deviation for ISQ scores in the two groups.	
31	Line chart representing changes by time in	62
	mean ISQ scores.	
32	Box plot representing median and range	64
	values for amounts of bone loss in the two	
	groups.	
33	Line chart representing median crestal bone	65
	height changes in each group (An increase	
	in measurement indicates bone loss).	
34	Crestal bone levels measured on CBCT	66
	images.	

List of Tables

Table	Subject	Page
1	Number of cases, gender, age, preoperative	54
	HbA1c values and ISQ values recorded at time	
	of implant insertion for group 1.	
2	Number of cases, gender, age, preoperative	54
	HbA1c values and ISQ values recorded at time	
	of implant insertion for group 2.	
3	Comparisons of the demographic data for the	55
	two groups.	
4	Descriptive statistics and results of repeated	57
	measures ANOVA test for comparison	
	between HbA1c in the two groups.	
5	Descriptive statistics and results of repeated	58
	measures ANOVA test for comparison	
	between HbA1c levels at different time periods	
	within each group.	
6	Descriptive statistics and results of repeated	60
	measures ANOVA test for comparison	
	between ISQ scores in the two groups.	
7	Descriptive statistics and results of repeated	62
	measures ANOVA test for comparison	
	between ISQ scores at different time periods	
	within each group.	
8	Descriptive statistics and results of Mann-	63
	Whitney U test for comparison between	
	amounts of bone loss after 1 year in the two	
	groups.	
9	Descriptive statistics and results of Wilcoxon	65
	signed-rank test for comparison between	
	crestal bone height changes within each group.	

Introduction

Oates and Ba 1 published that, diabetes mellitus is a chronic metabolic disorder that is reaching epidemic proportions, recently projected as affecting over 350 million individuals worldwide.

Hegazi et al² stated that, in Egypt, Diabetes mellitus is a fast-growing health problem with a significant impact on morbidity, mortality, and health care resources. Currently, the prevalence of Diabetes Mellitus is around 15.6% of all adults aged 20 to 79.

Bianchi et al 3 concluded that, diabetes mellitus affects the blood circulations and is associated with many complications such as retinopathy, ischemic heart disease, cerebrovascular disease, neuropathy nephropathy, peripheral arterial diseases. Consequently there are several manifestations. Marginal periodontitis oro-dental subsequent alveolar bone loss is one of the most common oro-dental complications especially in case of uncontrolled diabetes, which may lead to tooth loss and partial or total edentulism.

Casap et al 4 reported that, dental implants are usually used with excellent success rates in generally healthy individuals to replace their missing teeth; on the other hand, their use in diabetic patients remains controversial.

Recent studies indicate that diabetic patients might significantly benefit from implant supported rehabilitation allowing for an improved capacity for nutrition and metabolic control of the disease 5, 29, 37.

Kotsovilis et al 5 stated that diabetes mellitus could contribute to implant failure as a result of impairment of vascular healing, decreased wound supply microangiopathies, decreased host defences, formation of advanced glycation end products (AGEs), reduction in collagen production and increased collagenase activity.

Nobre et al ⁶ published that, given the high number of affected individuals, an urgent need to understand the effects of diabetes on dental implants in order to improve the care for those patients.

A chemically modified hydrophilic titanium implant has been developed which enhances osteoblasts – surface and cell – surface interactions, resulting in a reduction of healing time to three to four weeks in healthy population. Mamalis et al ⁷ concluded that, this hydrophilic surface had a positive effect on osteoblasts differentiation and mineralization which might counteract the cellular effects caused by diabetes.

Review of literature

Mavrogenis et al 8 published that, the concept of osseointegration as described by Brånemark is a direct and structural functional connection between ordered living bone and the surface of a load carrying implant. In other words, there is no relative progressive motion as a result of intimate direct contact between the implant and native bone. Osseointegration starts by a cascade of cellular and extracellular biological events which initiates the bone healing process at the bone - implant interface until the implant surface is finally covered with bone.

This cascade of events is regulated by growth and differentiation factors released by activated blood cells at bone – implant interface.

Marcianni et al 9 described the phases of bone healing. The first phase of bone healing around implants is coagulation and inflammation. A hematoma is formed first by blood contents escaping injured vessels and marrow at implant site. It is formed by platelets and coagulation factors. Inflammatory mediators as Tumour Growth Factor beta (TGF-B) and Platelet Derived Growth Factor (PDGF) are released due to platelets degranulation; these mediators recruit mesenchymal cells and osteoblasts into the area during the first 24 hours.

During this time, macrophages and neutrophils produce cytokines such as Tumour Necrosis Factor Alpha (TNF- α), Interleukin one (IL-1) and Interleukin six (IL-6). These cytokines further recruits mesenchymal cells. osteoblasts and chondroblasts. As healing transitions into the next phase which is proliferation phase, fibroblasts secrete their matrix which acts as a scaffold for recruitment of endothelial cells to produce granulation tissue. Osteoblasts differentiation from mesenchymal cells is directed by TGF-B Morphogenic Proteins Bone (BMP). **Immature** osteoblasts secrete osteoid which is the organic part of bone matrix and produce growth factors as TGF-B, while mature osteoblasts produce alkaline phosphatase and BMP. Alkaline phosphatase initiates osteoid matrix mineralization and formation of hydroxyapatite crystals. The newly formed woven bone which is disorganized calcified osteoid provides biological stabilization of the implant (Fig. 1).

As the mineralization process ends, most osteoblasts undergo apoptosis, while the remaining osteoblasts entrench themselves in lacunae, or rest on bone surface. These remaining osteoblasts are now osteocytes and responsible for maintenance (Fig 2). The bone healing process is terminated by the remodelling phase which is controlled by osteoblasts which not only produce the components of bone, but also, influence osteoclasts differentiation. Osteoclasts