

Microbial resistance of polymyxin and its potential underlying mechanism(s) among Gram-negative bacteria recovered from nosocomial infections in Egypt

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Amani Thaer Abdulzahra Quraishi

Bachelor of Pharmaceutical Sciences

Faculty of Pharmacy, Misr University for Science and Technology, 2014

Under Supervision of

Prof. Dr. Walid Faisal Ahmed Elkhatib, PhD

Professor of Microbiology and Immunology,

Faculty of Pharmacy, Ain Shams University

Dr. Mahmoud Abdel-Ati Fouad Khalil, PhD

Lecturer of Microbiology and Immunology,

Faculty of Pharmacy, Al-Fayoum University.

ACKNOWLEDGMENTS

First and foremost, all thanks and praises to Allah, as he gave me the strength to continue this path with all ups and downs that have faced me along the way.

I would first like to express my deepest gratitude **Prof. Dr. Walid Faisal Elkhatib**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, the door to Prof. **Elkhatib** office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it.

There are no enough words to thank Dr. Mahmoud Abdel-Ati Fouad Khalil, lecturer of Microbiology and Immunology, faculty of pharmacy, Al-Fayoum University, as you always had my back through this entire time and suggesting the point of my research, planning the work, scientific supervision, valuable discussions and constructive criticism throughout this study.

A special thanks to **Dr. Abdelbary Prince**, Associated Professor of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo university, and founder of EgyptBiolabs, for his help and offering all the Lab. Facilities.

I also would like to thank everyone who were involved in the validation for this research as without their passionate participation and input, this study could not have been successfully conducted.

Finally, my deepest everlasting thanks and appreciation are for my beloved dad, mom, and siblings who have never failed to give me support and encouragement throughout my life. And I would like to take this opportunity to thank my friends, specially Dr. Lubna Ali for their continuous support and prayers that truly helped me to accomplish this work.

والحمد لله كما ينبغي لجلال وجهه وعظيم سلطانه.

Amani 7. Abdulzahra.

LIST OF CONTENTS

ACE	KNOWLEDGMENTS	II.
LIST	OF CONTENTS	III.
LIST	OF ABBREVIATIONS	VII.
LIST	OF FIGURES	X.
LIST	OF TABLES	XII.
ABST	TRACT	13
INTRO	ODUCTION	16
AIM (OF WORK	17
LITE	RATURE REVIEW	20
1.	Nosocomial Infections	21
2.	Types of Nosocomial Infections	22
	2.1. Central line-associated bloodstream infections	22
	2.2. Resistance in Gram-negative Bactera	22
	2.3. Surgical Site Infections	22
	2.4. Ventolator Associated Pneumonia	23
3.	Most common bacterial microorganisms that cause nosocomial infections	23
4.	Epidemiology of Nosocomial Infections	24
5.	Acinetobacter baumannii	26
6.	Genus Acinetobacter	27
7.	Natural Habitat	28
8.	Virulence Factors	28
9.	Diseases caused by A. baumannii	29
	9.1. Hospital-acquired Pneumonia	30
	9.2. Community-acquired Pneumonia	30
	9.3. Bloodstream Infections	30

	9.4. Urinary Tract Infections	31
	9.5. Meningitis	30
	9.6. Other Manifestations	30
10	. A. baumannii Antibiotic Resistance Mechanisms	31
11	. Antimicrobial Inactivating Enzymes	33
	11.1. Porins Channels and Other Outer Membrane Proteins	36
	11.2. Mutations that Change Cellular or Targets Functions	37
12	. Therapeutic Options	38
	12.1. Polymyxin	41
MAT]	ERILS AND METHMETHODS	45
I.	MATERIALS	46
1.	Bacterial Isolates	46
	1.1. Reference Microorganism	46
2.	Bacterial Identification	46
3.	Chemicals	46
4.	Media and Media Ingredients	48
5.	Buffers, Solutions and Reagents	49
6.	Anti-biogram Analysis of A. baumannii Isolates Against some Antimicrobial	52
	Agents	52
	6.1. Antimicrobial Susceptibility Test Disk Diffusion Method	
	6.2. Minimum Inhibitory Concentrations (MICs)	52

7.	Equipment	53
II.	Methods	55
1.	Identification of Bacterial Isolates and Microscope examination and	55
	morphology	
2.	Anti-biogram Analysis of A. baumannii Isolates Against some Antimicrobial	55
	Agents	
	2.1.Antimicrobial Susceptibility Testing	55
	2.2. Minimum Inhibitory Concentrations MICs	56
3.	β-Lactamase assays	56
	3.1. Modified Hodge test (MHT)	56
	3.2. Imipenem-EDTA double-disk synergy test	56
4.	DNA Extraction	57
5.	Agarose Gel Preparation	58
6.	Polymerase Chain Reaction (PCR)	59
7.	Primers Used in this Study	60
8.	PCR Protocol	61
	8.1. Investigation of Colistin Resistant Genes	61
	8.2. Detection of Carbapenem-hydrolyzing β -lactamase genes	61
	8.3. Detection of 16S rRNA methylase genes	61
RESU	ILTS	62
1.	Identification of Acinetobacter baumannii	63
	1.1. Gram Stain and Microscope Examination	63
	1.2. Vitek-2 System	64
2.	Distribution of Gram-negative Isolates	65
3.	Distribution of Acinetobacter baumannii Isolated from Different Clinical	66
	Specimens	
1	Distribution of Acinotohacter haumannii Isolated per Conder	67

LIST OF CONTENS

5.	Anti-biogram Analysis of A. baumannii Isolates Against some Antimicrobial	68
	Agents	
	5.1. Antimicrobial Susceptibility Test Disk Diffusion Method	69
	5.2. Minimum Inhibitory Concentrations MICs	70
6.	Molecular Characterization of Carbapenemase and 16S rRNA	73
	Methyltransferase Genes	
7.	Colistin Resistant Determinants	74
8.	Sequencing	75
6. I	DISCUSSION	91
7. S	UMMARY	101
8. F	REFERENCES	103
	الملخص العرب	1

LIST OF ABBREVIATIONS

ABBREVIATIONS Definition

A.b Acinetobacter baumannii

ADCs Acinetobacter-derived Cephalosporinase

AK Amikacin

AAC Aminoglycoside acetyltransferase

ANT Aminoglycoside nucleotidyltransferase

APS Aminoglycoside phosphotransferase

AMEs Aminoglycoside-modifying enzymes

BaCl2 Barium chloride

BAP Biofilm-associated protein

CRE Carbapenem-resistant Enterobacteriaceae

CRAB Carpabenem-resistant Acinetobacter baumannii

CAUTI Catheter associated urinary tract infections

CTX Cefotaxime

CLABSI

Central line-associated bloodstream infections

CNS Central nervous system

CSF Cerebrospinal fluid

CIP Ciprofloxacin

CLSI Clinical and Laboratory Standards Institute

CT Colistin

CO Co-trimoxazole

DO Doxycycline

ESKAPE Enterococcus faecium, Staphylococcus aureus, Klebsiella

pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa and Enterobacter spp.

EDTA Ethylenediaminetetraacetic acid

EARS-NET European antimicrobial resistance surveillance network

ESBL Extended-spectrum Beta-lactamase

XDR Extensive-drug resistance

FQ Fluoroquinolone

FDA Food and Drug Administration

CN Gentamicin

GNB Gram-negative Bacteria

HAI Health care associated infections

HGT Horizontal gene transfer

Imp Imipenem

IS Insertion sequence

ICU Intensive Care Unite

LPS Lipopolysaccharide

LIST OF ABBREVIATIONS

MEM Meropenem

MBLs Metallo-Beta-lactamase

MIC Minimum inhibitory concentration

MGEs Mobile Genetic Elements

MHT Modified Hodge Test

MH agar Muller-Hinton Agar

MDR Multi-Drug Resistant

OMPs Outer membrane proteins

PAN Pan-drug resistance

PBPs Penicillin-binding proteins

KOH Potassium hydroxide

RIF Rifampicin

NaOH Sodium hydroxide

H2SO4 Sulphuric acid

SSI Surgical site infections

TOB Tobramycin

SXT Trimethoprim-sulfamethoxazole

USA United State of America

UTI Urinary tract infection

VAP Ventilator associated pneumonia

WHO World Health Organization

LIST OF FIGURES

Table	Page Number
Figure 1: Definition of drug-resistant Acinetobacter species along with	44
therapeutic options. Resistance promoting factors and Susceptibility	
controlling factors has been summarized	
Figure 2:Gram stain of A. baumannii test Isolates showing Red Coccobacilli	63
Figure 3: Vitek 2-system, A. baumannii Identification Report	64
Figure 4: Distribution of Gram-Negative Isolates	65
Figure 5: Percentage Distribution of <i>A. baumannii</i> Isolates as per Source of Clinical Specimens	66
Figure 6: Percentage Distribution of <i>A. baumannii</i> Isolates per Gender	67
Figure 7: Results of Antimicrobial Susceptibility Testing Performed by the Disk Diffusion Method.	69
Figure 8: Multiplex PCRs for detection of <i>blaOXA</i> carbapenemase genes	73
Figure 9: Agarose Gel electrophoresis of <i>Acinetobacter baumannii</i> , PCR product isolate	74
Figure 10: Sequence chromatogram for A140 pmrC gene (Forward)	76
Figure 11: Sequence chromatogram for A140 pmrC gene (Reverse)	77
Figure 12: Protein alignment of PmrCA140 with ATCC19787	79
Figure 13: Sequence chromatogram for A140 pmrB gene (Forward)	80
Figure 14: Sequence chromatogram for A140 pmrB gene (Reverse)	81
Figure 15: Protein alignment of PmrBA140 with ATCC19787	82
Figure 16: Sequence chromatogram for A140 pmrA gene (Forward)	83
Figure 17: Sequence chromatogram for A140 pmrA gene (Reverse)	84

LIST OF FIGURES

Figure 18: Sequence chromatogram for A140 LpxA gene (Forward)	85
Figure 19: Sequence chromatogram for A140 LpxA gene (Reverse)	86
Figure 20: Sequence chromatogram for A140 LpsB gene (Forward)	87
Figure 21: Sequence chromatogram for A140 LpsB gene (Reverse)	88
Figure 22: Sequence chromatogram for A140 LpxC gene (forward)	89
Figure 23: Sequence chromatogram for A140 LpxC gene (Reverse)	90

ΧI

LIST OF TABLES

Table	Page Number
Table 1. Resistance rates of Gram-negative bacteria that causes ICU-acquired infections	24
Table 2. Mechanisms of antibiotic resistance found in <i>Acinetobacter</i> species Analysis of antibiotic resistance genes in multidrug-resistant <i>Acinetobacter</i> sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center	31
Table 3. Different chemicals used in the present study and their sources	46
Table 4. Equipment used throughout this study	53
Table 5. kit content of DNeasy Blood & Tissue Kits (Qiagen)	57
Table 6. Primers used in this Study	60
Table 7. Interpretation criteria for antimicrobial susceptibility testing of A. baumannii by disk diffusion method	68
Table 8. Results of MIC testing performed by the broth dilution method.	70

XII