

Ain Shams University
Faculty of Engineering
Electronics and Communications Department

Modeling and Simulation of Perovskite Solar Cells

A Thesis

Submitted in partial fulfillment of the requirements of a Master of Science Degree in Electrical Engineering (Electronics and Communications Engineering)

Submitted by:

Mostafa Mohamed Salah El-Din

Faculty of Engineering and Technology, Future University

Supervised by:

Assoc. Prof. Dr. Mohamed Abdelhamid Abouelatta

Faculty of Engineering, Ain Shams University

Assoc. Prof. Dr. Ahmed Shaker Ghazala

Faculty of Engineering, Ain Shams University

Assoc. Prof. Dr. Kamel Mohamed Mahmoud Hassan

Faculty of Engineering and Technology, Future University

Cairo, 2019

Faculty of Engineering – Ain Shams University Electronics and Communications Engineering Department

Thesis Title: "Modeling and Simulation of Perovskite Solar Cells" Submitted by Mostafa Mohamed Salah El-Din Degree: Master of Science in Electrical Engineering **Examiners' Committee** Prof. Dr. El-Sayed Mahmoud Abdelhamid El-Rabaie Menofia University Faculty of Engineering Electronics and Communications Dept. Prof. Dr. Abdel Halim Abdel Naby Zekry Ain Shams University Faculty of Engineering Electronics and Communications Dept. Assoc, Prof. Dr. Kamel Mohamed Mahmoud Hassan **Future University** Faculty of Engineering Electronics and Communications Dept. Assoc. Prof. Dr. Mohamed Abdelhamid Abouelatta Ain Shams University Faculty of Engineering Electronics and Communications Dept.

Statement

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communications Engineering).

The work included in this thesis was carried out by the au-

thor at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a quali-

fication at any other university or institution.

Name: Mostafa Mohamed Salah El-Din

Date:

4/5/2019

Curriculum Vitae

Name: Mostafa Mohamed Salah El-Din

Date of Birth: 1/10/1991

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Future University

Date of Degree: June 2013

Acknowledgment

All praise is due to Allah, Most Merciful, and the Lord of the Worlds, who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength, and ability to complete this work.

My sincere gratitude goes to my family and my wife. This work would not have been possible without their continuous encouragement, patience, support, and assistance.

My words can't express my gratitude to my advisors Prof. Kamel Hassan who introduced me to the world of electronics and guided me through my research and career to the best.

Prof. Mohamed Abdelhamid and Prof. Ahmed Shaker encouraged me to be able to finish this work, and I wouldn't be able to finish this work without their support, guidance, encouragement, and confidence in me. All of them treated me not just as their student but also as their friend and son.

A lot of assistance has been given by Dr. Ahmed Saeed and the TA's of the future university in Egypt especially Eng. Ahmed Zahran and Mohamed Moussa.

Mostafa Salah Cairo, Egypt 2019

Abstract

Perovskite solar cells (PSCs) have attracted considerable attention as a competitor technology in solar cells due to the rapid enhancement in their power conversion efficiency (PCE) in recent years. PSCs have several advantages such as their bandgap tunability, lower cost, tolerance of high impurities, long diffusion length and wide optical absorption. In this thesis, different electron transport materials (ETMs) have been analyzed with a new Copper Iodide (CuI) Hole Transport Material (HTM) to replace the conventional electron and hole transport materials for PSCs, such as the titanium dioxide (TiO₂) and the expensive Spiro-OMeTAD which has been known to be suffer from performance degradation. Moreover, the influence of the electron transport layer (ETL), hole transport layer (HTL) and the perovskite layer thicknesses on the overall cell performance, is studied. The design of the proposed PSC is performed utilizing SCAPS-1D simulator (Solar Cell Capacitance Simulator-one dimension). Because of its high electron affinity and tunable bandgap, zinc oxysulfide (ZnOS) is found to be the best replacement for TiO2 as ETM. The results show that leadbased PSC with CuI as HTM is an efficient arrangement and better than the easily degradable and expensive Spiro-OMeTAD. According to the presented simulation and tuning of various layers thicknesses, the highest designed efficiency is 26.11%. In addition, different ETMs have been simulated with copper oxide (CuO) as HTM in Iodide/chloride mixed halide perovskite MAPbI_{3-x}Cl_x by incorporation of Chlorine (Cl) in perovskite lead halides (MAPbI₃) is used because MAPbI₃-_xCl_x films have a long term of thermal stability than MAPbI₃ and better carrier diffusion length. In addition, a proposal for tuning the features and parameters of the PSCs, such as the thickness and defect density of the perovskite layer, the electron, and hole transport layers, the doping concentrations, and the bandgap energy, has been introduced. The results showed that the tuned mixed halide PSCs with ZnOS as an electron transport material and CuO as a hole transport material have the highest performance with a power conversion efficiency of 30.82%. This achievement represents a 4.71% increase in conversion efficiency.

Keywords — Copper iodide; Copper oxide; Electron transport materials; Hole transport materials; Perovskite Solar Cell; SCAPS-1D.

Contents

ACKNOWLEDGMENTI	
ABSTRACTII	
IST OF FIGURESVIII	
IST OF TABLESXI	
IST OF SYMBOLSXIII	
ABBREVIATIONSXV	
INTRODUCTION1	
1.1 Introduction	1
1.2 Thin film solar cells (TFSCs)	2
1.3 PEROVSKITE SOLAR CELLS	3
1.4 Problem statement	4
1.5 Organization of thesis	5
SOLAR CELLS REVIEW9	
2.1 Introduction	9
2.2 Solar Radiation	O
2.3 OPTICAL PARAMETERS OF SOLAR CELL	2

		2.3.1	Solar Cell Working Mechanism	13
		2.3.2	Light Generated Current	15
		2.3.3	Collection Probability	17
		2.3.4	Quantum Efficiency (QE)	18
		2.3.5	Spectral Response (SR)	19
	2.4	SOLAR (CELL ELECTRICAL PERFORMANCE PARAMETERS	s 20
		2.4.1	The Photovoltaic Effect	20
		2.4.2	Solar Cells IV Curve	23
	2.5	PEROVSK	TE SOLAR CELLS	28
		2.5.1	Perovskite Materials	28
		2.5.2	Development of PSCs	29
		2.5.3	Working Mechanism in PSCs	30
	2.6	Summar	Υ	31
3	MODE	LING TEC	CHNIQUES AND SIMULATION PARAMETERS	32
	3.1	Introd	UCTION	32
	3.2	SCAPS-1	D SIMULATOR	32
		3.2.1	Introduction	32
		3.2.2	Basic equations in SCAPS	34
		3.2.3	Working mechanism	36
	3.3	THE STR	UCTURE OF THE PROPOSED PSCs	37
	3.4	MATERI	ALS	38

		3.4.1	Absorber layer	38
		3.4.2	Hole transport layer	39
		3.4.3	Electron transport layer	40
	3.5	SIMULATI	ON PARAMETERS	40
	3.6	SUMMAR	Υ	42
4	DESIG	N OF PSC	S WITH CUI AS HTM	43
	4.1	Introdu	JCTION	43
	4.2	CALIBRA	ATION	43
	4.3	Modeli	NG AND SIMULATION	44
	4.4	RESULTS	S AND DISCUSSION	45
		4.4.1	CuI as HTM with different ETM	45
		4.4.2	Influence of thickness	47
		4.4.3	Final tuning	49
	4.5	SUMMAR	Υ	50
5	DESIG	N OF PSC	S WITH CUO AS HTM	52
	5.1	Introdu	JCTION	52
	5.2	Modeli	NG AND SIMULATION	53
	5.3	RESULTS	S AND DISCUSSION	54
		5.3.1	CuO as HTM with different ETMs	54
		5.3.2	Influence of thickness of ETL and HTL.	56

		5.3.3	Influence of doping concentration 58
		5.3.4	Influence of defect density and thickness of MAPBI _{3-x} Cl _x 63
		5.3.5	Energy gap tuning of MAPbl _{3-x} Cl _x
		5.3.6	Final tuning
		5.3.7	Sensitivity to temperature on the performance parameters
			71
	5.4	SUMMARY	⁷ 73
6 C	ONCI	LUSIONS	AND RECOMMENDED FUTURE WORKS. 74
	6.1	Conclu	SIONS
	6.1	RECOMM	IENDED FUTURE WORKS75
REFE	REN	CES	76

List of Figures

Figure 2.1 The power spectral distribution of the sunlight [14] 11
FIGURE 2.2 EXCITATION AND CHARGE SEPARATION [15]
FIGURE 2.3 A CROSS SECTION OF A SIMPLIFIED SC
FIGURE 2.4 THE IDEAL FLOW OF CARRIERS IN A SOLAR CELL AT SHORT CIRCUIT, (A)
THE GENERATION OF E-H PAIR, (B) THE SEPARATION OF E-H PAIR BY THE BELT
IN ELECTRIC FIELD OF THE P $-$ N JUNCTION, AND (C)THE CURRENT FLOW IN THE
LOAD
FIGURE 2.5 QE FOR AN IDEAL AND PRACTICAL SCS
FIGURE 2.6 SC SPECTRAL RESPONSE
FIGURE 2.7 CARRIERS FLOW (A) ZERO VOLTAGE, ZERO CURRENT, (B) OPEN
CIRCUITING THE SC (C) SHORT-CIRCUITING THE SC
FIGURE 2.8 LIGHT EFFECT ON THE IV CURVE OF A SC
FIGURE 2.9 DEFINITION OF THE SHORT CIRCUIT CURRENT ON THE IV CURVE 25
Figure 2.10 Definition of the open circuit voltage on the IV curve 26
FIGURE 2.11 DEFINITION OF THE FILL FACTOR ON THE IV CURVE
FIGURE 2.12 CRYSTAL STRUCTURE OF PEROVSKITE MATERIALS [23]
FIGURE 2.13 THE STRUCTURE OF PSC
FIGURE 3.1 DEFINITION OF THE SC LAYERS IN SCAPS
FIGURE 3.2 DEFINITION OF THE SC MATERIALS AND DEFECTS IN SCAPS 34
FIGURE 3.3 FLOWCHART OF THE WORKING MECHANISM IN SCAPS-1D [31] 37 viii

FIGURE 3.4 DEVICE STRUCTURE
FIGURE 4.1 SIMULATION OF THE EXPERIMENTAL DATA
FIGURE 4.2(A) DEVICE STRUCTURE (B) ENERGY BAND DIAGRAM
FIGURE 4.3 CURRENT DENSITY CURVES FOR CH3NH3PBI3 BASED SOLAR CELLS WITH TIO2, CDS, ZNSE, ZNO, AND ZNOS
FIGURE 4.4 QUANTUM EFFICIENCY CURVES FOR MAPBI ₃ BASED SOLAR CELLS WITH TIO ₂ , CDS, ZNSE, ZNO, AND ZNOS
FIGURE 4.5 VARIATION IN PERFORMANCE PARAMETERS DEPENDING ON THE VARIATION OF THE THICKNESS OF ETM
FIGURE 4.6 VARIATION IN PERFORMANCE PARAMETERS DEPENDING ON THE VARIATION OF THE THICKNESS OF HTM
FIGURE 4.7 J-V CURVES FOR CUI/ZNOS CELL BEFORE AND AFTER TUNING THE THICKNESS
FIGURE 4.8 QE CURVES FOR CUI/ZNOS CELL BEFORE AND AFTER TUNING THE THICKNESS
FIGURE 5.1 (A) SCHEMATIC OF THE PSCs STRUCTURE. (B) ENERGY DIAGRAMS OF THE CONSTITUTING LAYERS
FIGURE 5.3 J-V CURVES OF THE PROPOSED PSCs WITH DIFFERENT ETMs 55
FIGURE 5.4 QE CURVES OF THE PROPOSED PSCs WITH DIFFERENT ETM 55
FIGURE 5.5 PERFORMANCE PARAMETERS WITH CHANGING THE THICKNESS OF ETL.
57

FIGURE 5.6 VARIATION IN PERFORMANCE PARAMETERS DEPENDING ON THE
VARIATION OF THE THICKNESS OF HTM
FIGURE 5.7 PERFORMANCE PARAMETERS VARIATIONS DEPENDING ON 60
Figure 5.8 Performance parameters variations depending on $N_{\rm D}$ of ETM
62
FIGURE 5.10 VARIATIONS OF THE BAND DIAGRAMS WITH DIFFERENT DOPING
CONCENTRATIONS ($10^{18}\text{cm}^{-3}\text{and}10^{20}\text{cm}^{-3}$) of CuO HTM layer 62
Figure 5.9 Performance parameters variations depending on $N_{\rm A}$ of
HTM63
Figure 5.11 Variation in Performance parameters depending on N_T 64
FIGURE 5.12 VARIATION IN PERFORMANCE PARAMETERS DEPENDING ON THE
THICKNESS OF THE ABSORBER LAYER
FIGURE 5.13 VARIATION IN PERFORMANCE PARAMETERS DEPENDING ON ENERGY
GAP OF THE ABSORBER LAYER
Figure 5.14 J-V curves for CuO/ZnOS cell before and after Tuning 68
FIGURE 5.15 QE CURVES FOR CUO/ZNOS CELL BEFORE AND AFTER
TUNING 69
FIGURE 5.16 CUO/ZNOS CELL ENERGY BAND DIAGRAM BEFORE TUNING 70
FIGURE 5.17 CuO/ZnOS CELL ENERGY BAND DIAGRAM AFTER TUNING 70
FIGURE 5.18 A COMPARISON BETWEEN THE RECOMBINATION RATES OF THE INITIAL
AND TUNED CUO/ZNOS CELL72
FIGURE 5.19 IMPACT OF TEMPERATURE ON SOLAR CELL PERFORMANCE