

A Methodology for WLAN Vulnerability Study

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Ahmed Ismail Mohamed Abdelrahman

Graduated from

Computer Systems Department, Faculty of Computer & Information Sciences, Ain Shams University 2012

Senior Embedded Software Engineer At Valeo.

Under Supervision of

Prof. Dr. Eman Shaaban

Computer Systems Department,

Faculty of Computer & Information Sciences,

Ain Shams University

Dr. Heba Khaled

Computer Systems Department,

Faculty of Computer & Information Sciences,

Ain Shams University

Acknowledgment

I would like to like to express my gratitude to my thesis supervisors, role models, technical experts and personal mentors: **Prof. Dr. Wail S. Elkilani, Prof. Dr. Eman Shaaban** and **Dr. Heba Khaled**. Honestly, without them I couldn't start my research path. I am more than lucky to work with their advice and support. Finally, I would thank my family for giving me the strength and power to finish this thesis.

Abstract

Nowadays, WPA/WPA2 is used for the authentication and encryptsion process of the most used WLANs. PSK mode is the dominant authentication mode for most of WLANs represented in small or non-professional networks. Cracking PSK password is discussed and implemented in many online tools and scientific papers with no clarification of links between the cracking process and WLAN standards. This thesis shows proficiency of all required aspects to cover that link's gap, and paves the way of proposing security and protection tools.

The thesis masters the related IEEE 802.11 MAC layer standards and the used protocols structures that relate to PSK authentication process. WLAN attacks are categorized to locate PSK cracking and define its related attacks and tools. Moreover the different used research platforms in PSK cracking are discussed like GPU, Multi Core CPU, FPGA and Cell BE.

To show WLAN Vulnerability, we used the acquired mastered knowledge to design and implement our PSK cracking tool "Vulnerability Research Study Tool" (VRST). VRST represents a unique edge through illustrating the relations between the cracking steps input and 802.11 standards. To the best of our knowledge, the previously research contributions didn't reveal the knowhow of extracting the cracking inputs from the raw exchanged data between the Access Point and the client.

To accelerate WPA/WPA2 PSK cracking, the single threaded VRST design and implementation is adapted to shared memory parallel platforms: GPU and Multi-Core. Performance results show that the cracking efficiency is upgraded to 16X by utilizing Multi-Core processor and to 41x by using GPU.s

List of Contents:

Chapte	r 1: Intro	duction to WLAN 80211	
$1.\bar{1}$	Introduc	ction	2
1.2	IEEE 80	02.11	2
1.3	Data-Li	nk Layer	3
1.4	802.11	Security History	4
	1.4.1	Legacy Security Methodologies	5
	1.4.2	WPA	7
	1.4.3	WPA2	7
1.5	WLAN	Authentication	7
	1.5.1	IEEE 802.1x Authentication	8
	1.5.2	Preshared Keys (PSK)	9
		EAP	9
	1.5.4	Authentication and Encryption	10
		Keys	
	1.5.5	Four Way Handshake Process	11
1.6	802.11	MAC Frames	13
1.7	Problen	n Statement	18
1.8	Objectiv	ve	19
1.9	Thesis (Outlines	20
Chapte	r 2: WLA	N Vulnerabilities Attacks	
2.1	Introduc	ction	22
2.2	WLAN	Attacks	22
	2.2.1	Man-In-The-Middle Attack	22
	2.2.2	Denial-of-Service (DOS) Attack	23
	2.2.3	ARP Modification Attack	23
	2.2.4	Mac Address Spoofing Attack	23
	2.2.5	Rogue AP Attack	23
	2.2.6	Deauthentication Attack	24
2.3	WPA/W	/PA2 PSK Attacks	25
2.4	Commo	on Used Tools of WLAN Attacks	26
	2.4.1	COWPAtty	26
	2.4.2	Aircrack-ng	26
	2.4.3	Pyrit	27

	2.4.4	ElcomSoft	27
	2.4.5	Hashcat	27
	2.4.6		27
	2.4.7		28
Chapte	r 3: VRST	Design And Implementation	
3.1	Introduc		30
3.2	CAP Fil	le Parsing Process	33
	3.2.1	Parsing CAP Header	36
	3.2.2	Parsing Packet Header	38
	3.2.3	Process Packet Data	40
3.3	PMK C	alculation	45
	3.3.1	HMAC	48
	3.3.2	SHA1	50
3.4	PTK Ca	lculation	53
3.5	MIC Ca	lculation	55
	3.5.1	MD5	56
Chapte	r 4: Parall	lel Architecture Enhancement	
4.1	Introduc	etion	60
4.2	Parallel	Architecture	60
4.3	Introduc	ction to GPGPU	63
	4.3.1	CUDA GPU HW Structure	65
	4.3.2	CUDA Program Structure	65
	4.3.3	Cuda Programming Model	68
	4.3.4	Device Memory Structure	69
4.4	WPA/W	/PA2 Cracking Tool	71
	impleme	entation on GPU	
	4.4.1	Parallelizing the tool	71
		implementation using GPU	
	4.4.2	The CPU Part Functionality	73
	4.4.3	The GPU Part functionality	74
4.5	Parallel	Implementation On CPU	74
	Archited	cture	
	4.5.1	Single Core CPU Structure	74
	4.5.2	Multicore Architecture	75
	4.5.3	Multithreaded Architecture	76
	4.5.4	OpenMp	76

Chante	4.5.5 WPA/WPA2 Cracking Tool implementation on OpenMp r 5: Implementation Results and Comparis	76 sons
0110p10		70115
5.1	Introduction	80
5.2	WPA/WPA2 cracking platforms	80
	5.2.1 FPGA	80
	5.2.2 Cell BE	82
5.3	Survey PSK Cracking Using Different	83
	Platforms	
5.4	VRST Different Platforms	89
	Implementations Results	
Chapte	r 6: Conclusion and Future Work	
6.1	Conclusion and Future Work	95

List of Figures:

Chapte	r 1: Introduction to WLAN 80211	
$1.\bar{1}$	Mac Frame Structure	4
1.2	Open System Authentication Sequence	6
1.3	Shared Key Authentication Sequence	6
1.4	Enterprise mode Authentication Model	7
1.5	PTK GTK Functionality	11
1.6	Four Way Handshake Process	12
1.7	802.11 Frame	13
1.8	Frame Control Structure	14
1.9	EAPOL Frame Structure	16
1.10	EAPOL-Key Packet Body	16
1.11	Key Information	17
1.12	Beacon Frame Format	18
1.13	Association Request Frame Format	18
Chapte	r 2: WLAN Vulnerabilities Attacks	
2.1	Deauthentication Frame Structure	24
2.2	Aireplay Core Functionality	28
2.3	Deauthentication Attack Example	28
Chapte	r 3: VRST Design And Implementation	
3.1	VRST Main Functional Blocks	31
3.2	VRST Phases Flow Chart	32
3.3	Parsing CAP File Flow Chart	35
3.4	CAP File Structure	35
3.5	CAP File Header [1xyx3]	36
3.6	LINKTYPE_IEEE802_11_PRISM	37
	Packet Stucture	
3.7	LINKTYPE_IEEE802_11_RADIOTAP	37
	Packet Stucture	
3.8	Process Link Type Flow Chart	38
3.9	Packet header structure [1xyx3]	39
3.10	Parsing Packet Header Flow Chart	39

3.11	Process Packet Data Flow Chart	40
3.12	Process Link Type Flow Chart	41
3.13	Store MAC Addresses Flow Chart	42
3.14	Store ESSID Flow Chart	43
3.15	Store Four Way Handshake Data Flow	44
	Chart	
3.16	PMK Calculation Flow Chart	47
3.17	HMAC steps Flow Chart	49
3.18	SHA1 Calculations Flow Chart	51
3.19	SHA1 Round Calculation	53
3.20	PTK Calculation Flow Chart	54
3.21	PTK MIC Flow Chart	55
3.22	MD5 Implementation Flow Chart	57
3.23	MD5 Round Calculations	58
-	4: Parallel Architecture Enhancement	
4.1	Shared Memory Model	60
4.2	Distributed Memory Model	61
4.3	Parallel Programming Model	61
4.4	GPU HW Architecture	65
4.5	Cuda Program Thread, Block and Grid	67
4.6	CUDA Blocks to SM Assignation	68
4.7	CUDA Full Program Model	69
4.8	Cuda Device Memory	70
4.9	VRST Implementation on CUDA Flow	72
	Chart	
4.10	VRST Implementation on Multicore Flow	78
	Chart	
_	5: Implementation Results and Compariso	
5.1	FPGA Architecture	81
5.2	Cell BE Architecture	82

List of Tables:

Chapter	1: Introduction to WLAN 80211	
$1.\bar{1}$	PHY Layer Amendments	3
1.2	802.11 Authentication and Encryption	5
	different modes	
1.3	EAPOL Frames	10
1.4	Mac Frame Types and Sub Types	15
Chapter	3: VRST Design And Implementation	
3.1	SHA1 constants and functions	52
Chapter	5: Implementation Results and Comparison	IS
5.1	Convey Based Architecture Results	84
5.2	Efficient High Speed FPGA Results	84
5.3	Cuda Hashcat Results	85
5.4	Cell BE Results	85
5.5	Intel i5 vs ATI HD 5470 Specs	87
5.6	Pyrit Results I	88
5.7	Pyrit Results II	89
5.8	Vuln Study Benchmark	90
5.9	GTX 860M Specs	91
5.10	GTX 860M Specs	92
5.11	GTX 860M Specs	93

List of Abbreviations:

AES Advanced Encryption Standard.
AKM Authentication Key Management.

AP Acces Point.

ARP Address Resolution Protocol.

Bssid Basic Service Set ID

CCMP Counter Mode with Cipher Block Chaining Message Authentication

Code Protocol.

DK Derived Key
DoS Denial of Service.

EAP Extensible Authentication Protocol

EAPOL Extensible Authentication Protocol over LAN

EAP-PSK EAP Pre-Shared Key.

EAP-TLS EAP Transport Layer Security
FPGA Field Programmable Gate Array

HMAC Hash Based Message Authentication Code
ISO International Organization for Standardization

KCK Key Confirmation Key

LEAP Lightweight Extensible Authentication Protocol

LLC Logical Link Control
MAC Media Access Control

MD5 Message Digest Algorithm 5
MIC Message Integrity Code

OSI Open Systems Interconnection

PBKDF2 Password-Based Key Derivation Function 2

PFR Pseudo Random Function.

PMK Pairwise Master Key.

PSKs Pre-Shared Key.

PTK Pairwise Transient Key.
QoS Quality of Service

RADIUS Remote Authentication Dial-In User Service.

SHA1 Secure Hash Algorithm 1
SSID Service Set Identification

VRST Vulnerability Research Study Tool.

WEP Wired Equivalent Privacy WPA Wi-Fi Protected Access.

List of Publications:

- 1- A. Abdelrahman, H. Khaled, E.Shaaban, W.Elkilani, "WPA-WPA2 PSK Cracking Implementation on Parallel Platforms", IEEE International Conference on Computer Engineering and Systems, 2018.
- 2- A. Abdelrahman, H. Khaled, E.Shaaban W.Elkilani, "Detatiled Study of WLAN PSK Cracking Implementation", International Journal of Network Security. (Submitted)

Chapter 1

Introduction To WLAN 802.11

1.1 Introduction

As a matter of fact, Wireless Local Area Network (WLAN) is one of the most used networks types today because of its easy mobility access and it's compatibility with almost all the electronic devices in our daily life. We can find working WLANs anywhere and anytime just by searching for the available WLANs from any mobile or laptop. Because of the previous illustrated facts, WLAN security becomes a point of interest for a lot of research studies and even illegal hacking communities. This thesis studies all the related aspects of a vulnerability in the dominant authentication protocol for most of WLANs. In this chapter we are going to explore the standards around our research point "WLAN Vulnerability Study". Section 1.1 clarifies the main stack of networks standards "OSI Model" and it's relation with our research layer in IEEE 802.11. Then we dig more deep in the standards of WLAN IEEE 802.11 to get aware what's the related network layer part to our research in section 1.2. Section 1.3 previews the main important points of IEEE 802.11 History. Finally we put the spot on the main authentication modes in 1.4 and 1.5.

1.2 IEEE 802.11:

The International Organization for Standardization (ISO) is a global organization identifies the Open Systems Interconnection (OSI) model, which standardizes the communication stack of computer systems in the following seven layers. Application, Presentation, Session, Transport, Network, Data-Link and Physical layers [1]. Data Link layer is the point of interest in this thesis, It's divided to Logical Link Control (LLC) and Media Access Control (MAC) sub layers. IEEE 802.11 is a set of MAC and PHY specifications

and standards to establish WLANs [2]. Wi-Fi Alliance is a nonprofit organization of 600 member companies dedicated to promote the wireless technologies, certify WLAN products and to enhance the costumer awareness of the new 802.11 standards [3]. Regarding the PHY layer IEEE standards, Table 1.1 shows the main PHY amendments with their frequencies and data rates.

Table 1.1 PHY Layer Amendments [3]

Wi-Fi technology	Frequency band	Maximum data rate
802.11a	5 GHz	54 Mbps
802.11b	2.4 GHz	11 Mbps
802.11g	2.4 GHz	54 Mbps
802.11n	2.4 GHz, 5 GHz,	450 Mbps
	2.4 or 5 GHz (selectable),	
	or 2.4 and 5 GHz (concurrent)	
802.11ac	5 GHz	1.3 Gbps

Regarding the Mac Layer, the rest of this chapter declares more about its standards and the related amendments and protocols.

1.3 Data-Link Layer:

The 802.11 Data-Link layer is the same for all 802 based networks and divided into two sub layers. LLC is the top sub layer and MAC is the down sub layer. Some types of information are exchanged between MAC sub layer and the upper layers like quality of service (QOS). LLC is an adaptor between MAC layer and Network layer. When the data is sent from Network layer to Data-Link layer, the data is handled to the LLC and becomes known as MSDU (MAC Service Data Unit). When the data is sent from LLC to MAC layer, it's encapsulated inside MPDU (MAC Protocol Data Unit) or what is called 802.11 MAC frame as shown in

Figure 1.1. Only 802.11 Data type frame can carry LLC upper layer information [1].

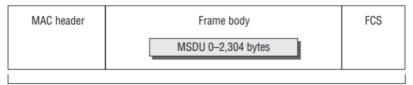


Figure 1.1 Mac Frame Structure

1.4 802.11 Security History:

The free mobility main advantage of WLAN became its main security risk because WLAN data is transmitted over open air frequencies unlike the wired networks. IEEE 802.11 standards guarantee two major components Encryption and Authentication. Encryption main goal is to secure the data privacy by making the transmitted data vague in the open access air by using cipher encryption technologies. Authentication is needed to identify the authorized user for accessing the WLAN and its resources. Authentication is based on verifying the credentials of the users like the user name and password. Table 1.2 illustrates the main Encryption and Authentication methodologies used in WLAN [4-6]. The following sections study and clarify the content of this table in details.