

Evaluation of Some Functionalized Thiazolidinones and Poly Aromatic Amines as Multi-functional Additives for Lube Oil Base Stock

A Thesis Submitted of the Requirements for the Ph.D of Science Degree In Chemistry

By

Hoda Abdel-Azeem Mohammed Awad-Allah

(Egyptian Petroleum Research Institute (EPRI)) (M.Sc. in Organic Chemistry 2014 – Helwan University)

Presented To
Chemistry Department
Faculty of Science
Ain Shams University
Cairo, Egypt
2019

Evaluation of Some Functionalized Thiazolidinones and Poly Aromatic Amines as Multi-functional Additives for Lube Oil Base Stock

By

Hoda Abdel-Azeem Mohammed Awad-Allah

(M.Sc. in Organic Chemistry 2014 - Helwan University)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Ph.D of Science Degree In Chemistry

Under the Supervision of

Prof. Dr. Mohamed El-Badry Shaban

Professor of Organic Chemistry, Department of Chemistry, Faculty of Science, Ain Shams
University

Prof. Dr. Ali Ahmed Mohamed El-Bassousi

Professor of Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute

Prof. Dr. Maher Ibrahim Nessim

Professor of Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute

Presented To
Chemistry Department, Faculty of Science, Ain Shams University
2019

Approval Sheet

Name of candidate: Hoda Abdel-Azeem Mohammed Awad-Allah

Degree: Ph. D. Degree in Chemistry

Thesis Title: "Evaluation of Some Functionalized Thiazolidinones and Poly Aromatic Amines as Multi-functional Additives for Lube Oil Base Stock".

This Thesis has been approved by:	Signature
Prof. Dr. Mohamed El-Badry Shaban	
Professor of Organic Chemistry,	
Department of Chemistry, Faculty of Science,	
Ain Shams University.	
Prof. Dr. Ali Ahmed Mohamed El-Bassousi	
Professor of Chemistry,	
Analysis and Evaluation Department,	
Egyptian Petroleum Research Institute.	
Prof. Dr. Maher Ibrahim Nessim	
Professor of Chemistry,	
Analysis and Evaluation Department,	
Egyptian Petroleum Research Institute.	

Approval

Head of chemistry Department.

Prof. Dr. Ibrahim H. A. Badr

Acknowledgements

First and foremost, my gratitude goes to Allah, who gives me the strength and wisdom to do my research in an acceptable style. Thanks to Egyptian Petroleum Research Institute (EPRI), for financial support and facilities offered which enabled me to carry out this work.

Deep thanks and gratitude are due to prof. Dr. Ali Ahmed Mohamed El-Bassousi, Professor of Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), for support, great patience, professional guidance, strong confidence in my doing everything best and for his invaluable suggestions for improving the manuscript. I wish for him a great success and a good health all of his life.

I wish also to thank prof. Dr. Maher Ibrahim Nessim, Professor of Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), for his intelligent supervision, consistent motivation, extraordinary patience and exceptional freedom throughout the work on this dissertation. I owe a lot of my success to him.

I owe a well-deserved debt of deep gratitude to prof. Dr. Mohamed El-Badry Shaban, Professor of Organic Chemistry, Department of Chemistry, Faculty of Science, Ain shams University, for giving me the honor of working under his supervision, and for his interest and following up the progress in the work and continuous support.

My gratitude goes to Dr. El- Sayed Khairy Attia, Researcher, Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), he continuously trained me to become a better researcher, also for his guidance, valuable proposals, constructive criticism and encouragement.

Thanks to my friends and all the members of the staff and colleagues of Centeral Analytical Unit and Analysis and Evaluation Department for their co-operation.

Last but not least, I would like to thank those closest to me, whose presence helped make the completion of my thesis possible. These are my Mother and Sister. I can not thank them enough for what they have done for me, with all their pray. I'd like to dedicate this work to the spirit of my Father.

Hoda Abdelazeem
2019

Conte	nt	Page
List of	tables	vi
List of	figures	X
List of	schemes	xix
List of	abbreviations	xxi
List of	publications	xxii
Aim of	the work	xxiv
Abstrac	et	XXV
	• Chapter I. Introduction	
I.	Introduction.	1
I.1.	The Importance of lubricant	2
I .2.	Composition of motor oils	5
I .2.1.	Mineral oils	5
I.2.2.	Synthetic lubricant base oils	8
I.3.	The physical properties of motor oils	12
I.3.1.	Viscosity	12
I.3.2.	Pour point and cloud point	12
I.3.3.	Flash point	13
I.3.4.	Fire point	13
I.3.5.	Carbon residue	14

Content		Page
I.3.6.	Total acid and base number	14
I.4.	Lubricating oil additives	15
I.4.1.	The importance of additives	15
I.4.2.	General properties of additives	17
I.4.3.	Types of lubricating oil additives	20
I.4.3.1.	Antioxidants (AO)	21
I.4.3.1.1.	The oxidation of lubricating oils	21
I.4.3.1.2.	The oxidation mechanism of lubricating oils.	22
I.4.3.1.3.	Factors affect on the rate of oxidation of oils	27
I.4.3.1.4.	Examples of antioxidants (Oxidation	20
	Inhibitors)	30
I.4.3.2.	Antifoams (AF)	40
I.4.3.3.	Viscosity index improvers (Modifiers)	41
I.4.3.3.1.	Mechanism of viscosity index improvers	44
I.4.3.3.2.	Viscosity modifiers (VMs) for motor oil	46
I.4.3.4.	Pour point depressants (PPDs)	52
I.4.3.4.1.	Mechanism of pour point depressants	58
I.4.3.5.	Multifunctional nature of additives	63
I.4.3.6.	Nano-particle additives	64
I.5.	Quantum chemical methods	78
	• Chapter II. Experimental	
II.1.	Raw materials.	83
II.2.	Chemicals and solvents	83

Conten	t F	Page
II.2.1.	Chemicals	83
II.2.2.	Solvents	84
II.3.	Preparation of antioxidants (101: 110)	84
II.3.1.	Synthesis of alkoxybenzaldehydes (step1)	84
II.3.2.	Synthesis of rhodanine derivatives (96-100)	85
	(step2)	
II.3.3.	Synthesis of antioxidants (101-110) (step3)	87
II.4.	Preparation of pour point depressant and	89
	viscosity improver	
II.4.1.	Synthesis of the o-dodecyloxyaniline (step1)	89
II.4.2.	Synthesis of poly o-dodecyloxyaniline (step2)	90
II.5.	Identification of the prepared compounds	91
II.6.	Oxidation stability study	92
II.7.	Evaluation of the prepared polymer as viscosity	93
	index improver and pour point depressant	
II.8.	Quantum chemical calculations	95
	• Chapter III. Results and Discussion	
III.1.	Physicochemical properties of the base oil	96
III.2.	Confirmation of antioxidants structures (101-	06
	110)	96
II.2.1.	Elemental analysis	97
III.2.2.	Infrared spectroscopy	98
III.2.3.	¹ H-NMR spectroscopy	103

Content		Page
III.2.4.	Mass spectroscopy	114
III.3.	Characterization of the prepared polymer	129
III.3.1.	Determination of molecular weight of the prepared polymer.	129
III.3.2.	Infrared spectroscopy	129
III.3.3.	¹ H-NMR spectroscopy	130
III.3.4.	Thermal stability	131
III.4.	Oxidation stability study	133
III.4.1.	Oxidation of base stock without any additives (blank sample)	133
III.4.2.	Evaluation of the synthesized compounds as antioxidants for base oil.	135
III.4.2.1.	Total Acid Number (TAN) in the presence of the synthesized compounds (101-105) (series 1)	
III.4.2.2.	Viscosity in the presence of the synthesized compounds (101-105) (series 1)	139
III.4.2.3.	Total Acid Number (TAN) in the presence of the synthesized compounds (106-110) (series 2)	4.40
III.4.2.4.	Viscosity in the presence of the synthesized	146
	compounds (106-110) (series 2)	140
III.4.2.5.	The comparison between Total Acid	
	Number (TAN) in the presence of the two	149
	series [(101-105) and (106-110)]	

Content		Page
III.4.2.6.	The comparison between the viscosity in the	
	presence of the two series [(101-105) and	151
	(106-110)]	
III.5.	Evaluation of the prepared compounds as	176
	lube oil additive	170
III.5.1.	As viscosity index improver (VII)	176
III.5.2.	As pour point depressant (PPD)	178
III.6.	Quantum chemical calculations	180
Summary		189
Reference		193
Arabic sur	nmary	

List of tables

Table No.	Title	Page No.
	CHAPTER I	
1.1	Variation in crude oil properties between sources.	6
	CHAPTER II	
2.1	Melting point and Yield % of the synthesized rhodanine derivatives (96-100).	87
2.2	Melting point and Yield % of the synthesized antioxidants.	88
	CHAPTER III	
3.1	Physicochemical properties of the base oil.	96
3.2	Elemental analysis of (101-110) structures.	97
3.3	IR spectra (ν , cm ⁻¹) of compounds (101-105).	98
3.4	IR spectra ($^{\nu}$, cm ⁻¹) of compounds (106-110).	99
3.5	Chemical structures of compounds 101-110.	103
3.6	¹ H-NMR chemical shifts (δ ppm) of compounds 101-105.	104

List of Tables

Гable No.	Title	Page No.
3.7	1 H-NMR chemical shifts (δ ppm) of compounds 106-110.	105
3.8	Mass spectroscopy of compounds 101-110.	114
3.9	IR spectra (ν , cm ⁻¹) of Poly o-dodecyloxyaniline.	129
3.10	1 H-NMR chemical shifts (δ ppm) of Poly ododecyloxyaniline.	130
3.11	Total acid numbers (TANs) and viscosities of the base oil at different times without additives.	134
3.12	TAN variation with oxidation time at different additive concentrations (101-105).	137
3.13	Viscosity variation with oxidation time and different additive concentrations (101-105).	140
3.14	TAN variation with oxidation time at different additive concentrations (106-110).	144
3.15	Viscosity variation with oxidation time and different additive concentrations (106-110).	147
3.16	TAN variation with oxidation time at different additive concentrations of 101 and 106.	152

List of Tables

Гable No.	Title	Page No.
3.17	TAN variation with oxidation time at different additive concentrations of 102 and 107.	154
3.18	TAN variation with oxidation time at different additive concentrations of 103 and 108.	156
3.19	TAN variation with oxidation time at different additive concentrations of 104 and 109.	158
3.20	TAN variation with oxidation time at different additive concentrations of 105 and 110.	160
3.21	Viscosity variation with oxidation time and different additive concentrations of 101 and 106.	162
3.22	Viscosity variation with oxidation time and different additive concentrations of 102 and 107.	164
3.23	Viscosity variation with oxidation time and different additive concentrations of 103 and 108.	166
3.24	Viscosity variation with oxidation time and different additive concentrations of 104 and 109.	168
3.25	Viscosity variation with oxidation time and different additive concentrations of 105 and 110.	170

List of Tables

Table No.	Title	Page No.
3.26	Experimental kinematic viscosity at 40°C & 100°C in (cSt) and viscosity index for base oil with and without the prepared polymer (additive).	177
3.27	The effect of the prepared polymer (additive) on base oil at different concentrations as PPD.	179
3.28	Quantum chemical parameters.	181