

كلية معتمدة

Ecology of Endangered Plant Species at Wadi Al-Afreet (North Western Coast), Egypt.

A Thesis

Submitted for the Degree of Doctor of Philosophy of Science in Botany

By Eman Gamal Ahmed Mohamed

B.Sc. (2008) - M.Sc. (2015)

Assistant lecturer–Department of Botany Faculty of Science Ain Shams University

Supervisors

Prof. Dr. Amal Ahmed Morsy

Professor of Plant Ecophysiology–Department of Botany Faculty of Science Ain Shams University

Dr. Ahmed Hashim M. Abd El-latif

Lecturer of Botany–Department of Botany
Faculty of Science
Ain Shams University

Dr. Mahmoud El-sayed Ali

Researcher of Plant Ecology Ecology and Range Management Department Desert Research Center

Dr. Hend Ahmed Kamel

Lecturer of Botany–Department of Botany
Faculty of Science
Ain Shams University

Dr. Ghada Ali Khdery

Researcher at Agriculture Applications
Department
National Authority for Remote Sensing and
Space Science

(2019)

كلية معتمدة

Approval Sheet

Title of Thesis: "Ecology of Endangered Plant Species at Wadi Al-Afreet (North Western Coast), Egypt."

Crostin Western Cousty, Egypti

Degree: Doctor of philosophy of science in Botany

Name of student: Eman Gamal Ahmed Mohamed

This Thesis for the Ph.D. Degree has been approved by:

Supervision committee

Prof. Dr. Amal Ahmed Morsy

Professor of Plant Ecophysiology, Botany Department, Faculty of Science, Ain Shams University.

Dr. Ahmed Hashim M. Abd El-latif

Lecturer of Botany, Botany Department, Faculty of Science, Ain Shams University.

Dr. Hend Ahmed Kamel

Lecturer of Botany, Botany Department, Faculty of Science, Ain Shams University.

Dr. Mahmoud El-sayed Ali

Researcher of Plant Ecology, Ecology and Range Management Department, Desert Research Center.

Dr. Ghada Ali Khdery

Researcher at Agriculture Applications Department, National Authority for Remote Sensing and Space Science.

Examination committee

Prof. Dr. Mohamed Nabih El-Shourbagy

Emeritus Professor of Plant Ecophysiology, Botany Department, Faculty of Science, Tanta University.

Prof. Dr. Fawzia Abo srea Ahmed Ebad

Emeritus Professor of Plant Ecophysiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls branch).

Prof. Dr. Amal Ahmed Morsy

Professor of Plant Ecophysiology, Botany Department, Faculty of Science, Ain Shams University.

Date: / / 2019 Committee in Charge

This Thesis has not previously been submitted for a degree at this or any other university

Head of Botany Department
Prof. Dr. Hanaa Moustafa Shabbara

لية معتمدة

Ph.D. Thesis

Name: Eman Gamal Ahmed Mohamed

Title: "Ecology of Endangered Plant Species at Wadi Al-Afreet

(North Western Coast), Egypt."

Degree: Doctor of philosophy in science in Botany

Supervisors:

Prof. Dr. Amal Ahmed Morsy

Professor of Plant Ecophysiology—Department of Botany Faculty of Science Ain Shams University

Dr. Ahmed Hashim M. Abd El-latif

Lecturer of Botany-Department of Botany Faculty of Science Ain Shams University

Dr. Hend Ahmed Kamel

Lecturer of Botany–Department of Botany Faculty of Science Ain Shams University

Dr. Mahmoud El-sayed Ali

Researcher of Plant Ecology Ecology and Range Management Department Desert Research Center

Dr. Ghada Ali Khdery

Researcher at Agriculture Applications
Department
National Authority for Remote Sensing and
Space Science

Head of Botany Department Prof. Dr. Hanaa Moustafa Shabbara

كلبة معتمدة

Approval sheet

Title of Thesis:

"Ecology of Endangered Plant Species at Wadi Al-Afreet (North Western Coast), Egypt."

Degree: Doctor of philosophy in science in Botany

Name of student: Eman Gamal Ahmed Mohamed

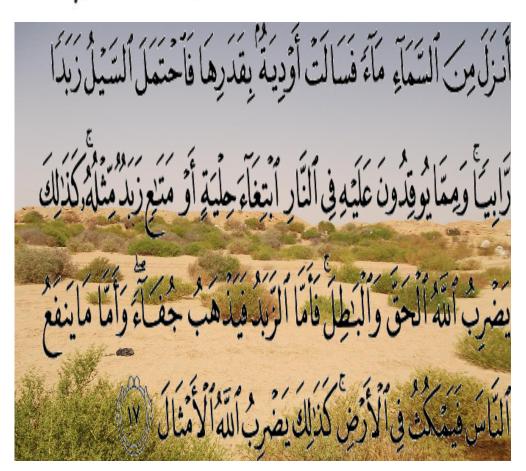
This Thesis for the Ph.D. Degree has been approved by:

1- Prof. Dr. Mohamed Nabih El-Shourbagy

Emeritus Professor of Plant Eco-physiology, Botany Department, Faculty of Science, Tanta University

2- Prof. Dr. Fawzia Abo srea Ebad

Emeritus Professor of Plant Eco-physiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls branch)


3- Prof. Dr. Amal Ahmed Morsy

Professor of Plant Ecophysiology–Botany Department, Faculty of Science, Ain Shams University

Date: / / 2019 Committee in Charge

This Thesis has not previously been submitted for a degree at this or any other university

بِسَسَ عُواللَّهُ التَّوْمُ لِنَا التَّحِيمِ

ايه 17 سورة الرعد

حيّك قالله العَظيم

Acknowledgmen?

Firstly, I do give praise to Allah for giving me the ability to complete this work successfully.

I wish to express my deep gratitude to **Prof. Dr. Dr. Amal Ahmed Morsy** Professor of Plant Ecophysiology, Botany Department, Ain-Shams University, for her supervising the work, reading the manuscript and for using all the facilities during the whole course of study.

I am greatly indebted to **Dr. Ahmed Hashim M. Abd El-Latif** lecturer of Plant Ecology, Faculty of Science, Ain Shams University for his advice, kind encouragement and reading the manuscript.

Also, I am greatly indebted and would like to express my deepest gratitude to **Dr. Hend Ahmed Kamel** lecturer of Plant Ecology, Botany Department, Ain-Shams University, for her supervision, continuous support, reading the manuscript and great help in the whole work.

I am greatly indebted and would like to express my deepest gratitude to **Dr. Mahmoud El-sayed Ali** Researcher of Plant Ecology, Ecology and Range Management Department, Desert Research Centre for his supervision, continuous support, reading the manuscript and great help in the field.

I am greatly indebted and would like to express my deepest gratitude to **Dr. Ghada Ali Khdery** Researcher at Agriculture Applications Department National Authority for Remote Sensing and

Space Science for her supervision, continuous support, reading the manuscript and great help in the whole work.

Great thanks to those people without them I could not make this work: My mother soul; My dear father who encouraged me throughout my life; My husband for his patience, encourage and support all times; My brothers for their great efforts and finally my lovely daughter and son.

Thanks, and gratitude are also due to all professors and my colleagues in the faculty of science.

Special thanks go to **Prof. Dr. Hanaa Moustafa Shabbarah**, Head of Botany Department, Faculty of Science, Ain-Shams University, for his support and encouragement.

Every challenging work needs self efforts as well as guidance of elders especially those who were very close to our heart. My humble effort I dedicate to my sweet and loving

My mother's soul (R.J.F.)

Father, husband, brothers, daughter "Hana" and son "Anas"

Whose affection, love, encouragement and prays of day and night make me able to get such success and honor.

TABLE OF CONTENTES

Content	Page
List of Tables	-
List of Figures	-
List of Plates	-
Abstract	i
Introduction	1
Review	4
Study area	33
1- Location of study area	33
2- Geology and Geomorphology	33
3- Water resources	35
4- Soil	41
Climate	43
Materials and Methods	52
1- Floristic and vegetation analysis	52
2- Multivariate analysis	53
3- Soil analysis	55
4- Biodiversity indices	58
5- Size distribution	60
6- Geographic Information System (GIS) analysis	60
7- Remote sensing	70
8- Adaptational features of <i>Ebenus armitagei</i> and	82
Periploca angustifolia at Wadi Al-Afreet 9- Pot experiment	87
10- Secondary metabolites screening	87
11- Antimicrobial Bioassay	89
12- Statistical analysis and data confirmation	90

Content	Page
Results and discussion	63
Results and Discussion	
1- Floristic relations	91
2- Multivariate analysis	110
3- Diversity indices	126
4- Size distribution	128
5- Adaptational features of <i>Ebenus armitagei</i> and <i>Periploca angustifolia</i> at Wadi Al-Afreet.	139
6- Geographic information system (GIS) analysis	155
7 -Hyper Spectral Remote Sensing Statistical Analysis	202
8 – Pot Experiment	236
9- GC/MS	238
10- Antimicrobial activity	266
Conclusion and Recommendation	269
English Summary	271
References	275
Appendix	I-XII
Arabic summary	اً۔د

List of Tables

Table (1): Meteorological data recorded from three stations (A1-Salloum, Marsa	
Matrouh and Siwa during the period from 2000 to 2017.	44
Table (2): classification of layers used to predict the disappearance location of two	
studied species at Wadi Al-Afreet.	65
Table (3): The ASD field spec 3 specifications.	72
Table (4): Summary of soil indices, equations and references.	79
Table (5): Summary of vegetation indices, algorithms and sources for vegetation	
indices, R_x is the reflectance at the given wavelength (nm).	80
Table (6): List of the recorded families with their species, Duration, Chorotype, Lif	î e
form, Habitat, Biological type and Remarks in Wadi Al-Afreet.	94
Table (7): Chorological analysis of the examined species as numbers and percentag	es
of the species recorded in the study area.	. 105
Table (8): Means of importance value (I.V.) and presence (%) of selected species in	the
four vegetation groups derived after application of TWINSPAN in Wadi Al-Afreet	•
Values in bold are species with highest presence values.	. 117
Table (9): Means (±), standard deviation and significance of variation between ground	ups
(analysis of variance between sample groups 1-6) for 15 environmental variables in	ı six
groups of stands, distinguished by TWINSPAN program in Wadi Al-Afreet. (value	S
with same litter in the same raw are not significant).	. 119
Table (10): Species biodiversity indices for the seven vegetational groups resulted f	rom
TWINSPAN.	. 127
Table (11): Mean (\pm) standard deviation of some demographic variables: (H: Heigh	ıt,
D: Diameter, r: simple linear correlation coefficient between height and diameter,	size
index, volume, density (ind. ha-1) of two selected species at wadi Al-Afreet	. 130
Table (12): Mineral contents (Ca^{+2} , Mg^{+2} , Na^{+} and K^{+} in meq/L) of <i>Ebenus armitage</i>	ei
and Periploca angustifolia, the soil below them and the ratio between them	. 140
Table (13): The optimal waveband to differentiate between studied species	. 214

Table (14): Different soil hyperspectral indices (SAVI, DSI, SI and NDWI,)	
study.	218
Table (15): Correlation between the different soil hyperspectral indices and	their
chemical analysis.	220
Table (16): Values of vegetation indices: Normalized Difference Vegetation	[ndex
(NDVI), Plant Senescence Reflectance Index (PSRI), Moisture Stress Index	(MSI) and
Simple ratio (SR).	223
Table (17): Calculated Leaf pigment Index: Carotenoid Reflectance Index (CRI 1 and
2), Anthocyanin Reflectance Index (ARI 1and 2) and chlorophyll a and b	
Concentration.	227
Table (18): Red edge vegetation index; RENDVI, MRENDVI, MRESR and	REPI 231
Table (19): Correlations between chlorophyll content and RENDVI, MREN	DVI, REPI
and MRESR.	234
Table (20): Phytoconstituents, R.T.= retention time, peak area, formula and	molecular
weight of chloroform extract of wild Periploca angustifolia	239
Table (21): Phytoconstituents, R.T.= retention time, peak area, formula and	molecular
weight of chloroform extract of cultivated Periploca angustifolia	244
Table (22): Comparing the secondary components and their categories of cl	ıloroform
extract in wild and cultivated Periploca angustifolia.	247
Table (23): Phytoconstituents, R.T.= retention time, peak area, formula and	molecular
weight of ethanol extract of wild Periploca angustifolia.	251
Table (24): Phytoconstituents, R.T.= retention time, peak area, formula and	molecular
weight of ethanol extract of cultivated Periploca angustifolia.	256
Table (25): Comparing the secondary components and their categories of et	hanolic
extract in wild and cultivated Periploca angustifolia.	260
Table (26): The antimicrobial activities of the chloroform, ethyl acetate, met	hanol and
petroleum ether extract of wild and cultivated Periploca angustifolia	268

List of Figures

Fig. (1): Location map of Wadi Al-Afreet.	34
Fig. (2): Geology map of Wadi Al-Afreet.	36
Fig. (3): The main drainage network in Wadi Al-Afreet.	38
Fig. (4): Stony dams built across drainage basins at Wadi Al-Afreet	39
Fig. (5): Close-up view of stony dams built across drainage basins at Wadi	Al-Afreet.
	39
Fig. (6): Man-made underground storage cisterns at Wadi Al-Afreet	40
Fig. (7): Soil map of Wadi Al-Afreet.	42
Fig. (8): Mean values of maximum and minimum temperature at Wadi Al-	Afreet
during (2000-2017).	45
Fig. (9): Annual means of maximum temperature at months June, July, Au	gust and
September.	46
Fig. (10): Mean values of total rainfall at Wadi Al-Afreet during (2000-201) $^{\prime\prime}$	7) . 47
Fig. (11): Annual means of rainfall at months November, December, Janua	ry and
February.	48
Fig. (12): Mean values of atmospheric pressure at Wadi Al-Afreet during (2) (2)	2000-2017).
	49
Fig. (13): Mean values of relative humidity at Wadi Al-Afreet during (2000	-2017)50
Fig. (14): Mean values of average wind velocity at Wadi Al-Afreet during (2	2000-2017).
	51
Fig. (15): Flowchart indicating the steps of weighted overlaying model to to	predict the
disappearance location of two studied species at Wadi Al-Afreet	68
Fig. (16): Analytical field spectroradiometer (ASD Field Spec)	71
Fig. (17): General view Ebenus armatgei at Wadi Al-Afreet.	84
Fig. (18): Close-up view of <i>Ebenus armatgei</i> at Wadi Al-Afreet	84
Fig. (19): General view <i>Periploca angustifolia</i> at Wadi Al-Afreet.	86

Fig. (20): Close-up view <i>Periploca angustifolia</i> at Wadi Al-Afreet
Fig. (21): Proportional percentage of life forms of recorded species in Wadi Al-Afreet.
103
Fig. (22): Proportional percentage of chorotypes of recorded species in Wadi Al-
Afreet.
Fig. (23): Location map of Wadi Al-Afreet showing the location of 16 stands112
Fig. (24): Classification of stands along the studied area, dendrogram obtained by
application of TWINSPAN classification technique and the fourth iteration cycle
considered as a satisfactory cut level
Fig. (25): DCA ordination diagram for the 16 stands on the first two axes, with the
TWINSPAN groups superimposed
Fig. (26): Biplot of Canonical Correspondence Analysis showing the relationships
between the seven vegetational groups of Wadi Al-Afreet and physicochemical
parameters of soil
Fig. (27): Biplot of Canonical Correspondence Analysis showing the relationships
between the recorded species in Wadi Al-Afreet and physicochemical parameters of
soil. Species names were abbreviated to the first letter of genus and the first three
letters
Fig. (28): Height diameter relationships for Ebenus armitagei and Periploca
angustifolia at wadi Al-Afreet132
Fig. (29): Size-frequency distribution for the population of <i>Ebenus armitagei</i> at Wadi
Al-Afreet along the three streams. The range of size classes are as follows: $1<20$, $2=21$ -
40, 3=41-60, 4=61-80, 5=81-100, 6=101-120 and 7=121-140
Fig. (30): Size-frequency distribution for the population of Periploca angustifolia at
Wadi Al-Afreet along the three streams. The range of size classes are as follows: 1<20,
2= 21-40, 3=41-60, 4=61-80, 5=81-100, 6=101-120 and 7=121-140
Fig. (31): Maps of sparse and dense vegetation cover derived from NDVI from (2013-
2017).
Fig. (32): Absolute Cover distribution of <i>Ebenus armitagei</i> at Wadi Al-Afreet164
Fig. (33): Relative Cover distribution of <i>Ebenus armitagei</i> at Wadi Al-Afreet165

Fig. (34): Absolute density distribution of <i>Ebenus armitagei</i> at Wadi Al-Afreet	:t. 166
Fig. (35): Relative Density distribution of <i>Ebenus armitagei</i> at Wadi Al-Afreet	167
Fig. (36): Height distribution of Ebenus armitagei at Wadi Al-Afreet.	169
Fig. (37): Diameter distribution of <i>Ebenus armitagei</i> at Wadi Al-Afreet	170
Fig. (38): TDS distribution of soil in relation to stands of <i>Ebenus armitagei</i> presence	e at
Wadi Al-Afreet.	171
Fig. (39): Na ⁺ distribution of soil in relation to stands of <i>Ebenus armitagei</i> presence	at
Wadi Al-Afreet.	172
Fig. (40): K+ distribution of soil in relation to stands of <i>Ebenus armitagei</i> presence	at
Wadi Al-Afreet.	174
Fig. (41): Ca ⁺² distribution of soil in relation to stands of <i>Ebenus armitagei</i> presenc	e at
Wadi Al-Afreet.	175
Fig. (42): Mg ⁺² distribution of soil in relation to stands of <i>Ebenus armitagei</i> presence	e at
Wadi Al-Afreet.	176
Fig. (43): pH distribution of soil in relation to stands of <i>Ebenus armitagei</i> presence	at
Wadi Al-Afreet.	177
Fig. (44): Sand distribution of soil in relation to stands of <i>Ebenus armitagei</i> presen	ce at
Wadi Al-Afreet.	178
Fig. (45): Silt+Clay distribution of soil in relation to stands of <i>Ebenus armitagei</i>	
presence at Wadi Al-afreet.	179
Fig. (46): Model for prediction of absence sites of Ebenus armitagei at Wadi Al-Afr	eet.
	181
Fig. (47): Absolute Cover distribution of <i>Periploca angustifolia</i> at Wadi Al-Afreet.	183
Fig. (48): Relative Cover distribution of <i>Periploca angustifolia</i> at Wadi Al-Afreet.	184
Fig. (49): Absolute Density distribution of Periploca angustifolia at Wadi Al-Afreed	. 186
Fig. (50): Relative density distribution of Periploca angustifolia at Wadi Al-Afreet.	. 187
Fig. (51): Height distribution of <i>Periploca angustifolia</i> at Wadi Al-Afreet	189
Fig. (52): Diameter distribution of <i>Periploca angustifolia</i> at Wadi Al-Afreet	190