

Ain Shams University

Faculty of Engineering

Electrical Power and Machines Department

ENHANCEMENT OF POWER SYSTEM STABILITY WITH LARGE SCALE INTEGRATED WIND FARMS

 $\mathbf{B}\mathbf{v}$

Eng. Ingy Ali Mohamed Abouzeid

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy,

in Electrical Engineering, at

Ain Shams University

Supervisors

Prof. Dr. Mohamed A.L. Badr

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

Dr. Rania Swief

Associate Professor of Electrical Engineering Faculty of Engineering Ain Shams University

Prof. Dr. Mahmoud A.H. Mostafa

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

Dr. Dalal Helmi

Head of Sector of Technical
Affairs for Electricity Market
and Cross-Border
Interconnection
Egyptian Electrical Holding
Company

2019

Ain Shams University

Faculty of Engineering

Electrical Power and Machines Department

Enhancement of power system stability with large scale integrated wind farms

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, in Electrical Engineering, at

Ain Shams University

 $\mathbf{B}\mathbf{y}$

Eng. Ingy Ali Mohamed Abouzeid

Supervisors Committee	Signature
Prof. Dr. Mohamed A.L. Badr Professor of Electrical Engineering, Faculty of Engineering, Ain Shams University	
Prof. Dr. Mahmoud A.H. Mostafa Professor of Electrical Engineering, Faculty of Engineering, Ain Shams University	
Dr. Rania Swief Associate Professor of Electrical Engineering, Faculty of Engineering, Ain Shams University	
Dr. Dalal Helmi Head of Sector of Technical Affairs for Electricity Market and Cross-Border Interconnection Egyptian Electrical Holding Company	

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Enhancement of power system stability with large scale integrated wind farms

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, in Electrical Engineering, at

Ain Shams University

$\mathbf{B}\mathbf{y}$

Eng. Ingy Ali Mohamed Abouzeid

Referees Committee	Signature
Prof. Dr. Ahdab Mohamed Kamel El-Morshedy Professor of Electrical Engineering, Faculty of Engineering, Cairo University	
Prof. Dr. Hany Mohamed Hassanein Professor of Electrical Engineering, Faculty of Engineering, Ain Shams	
University Prof. Dr. Rania Swief Associate Professor of Electrical Engineering, Faculty of Engineering, Ain Shams University	

Acknowledgements

In many ways I am deeply indebted to all the people, who contributed to this work. I would like to express my gratitude to all my teachers, professors and mentors who helped me to understand and to love this great profession. Many thanks to my supervisor, Prof. Dr. Mohamed Abdelatif Badr, for his supervision and his patience during my PhD stage. I would also like to thank Professor Mahmoud Abdelhamid, for his help and suggestions. I also want to thank Doctor Rania Swief, for very interesting discussions and valuable advices.

I would also like to express my deepest gratitude to Dr. Dalal Helmi, my co-supervisor at Egyptian Electrical Holding Company, for all her guidance and support. I thank for all her critics, encouragement and patience.

I want to thank all other people, who have followed and contributed to the thesis, which I cannot all name separately here.

Finally, I owe my gratitude to my family, my brother and my parents, for all their support during my personal and professional education.

I am mostly indebted to the person being closest to me, my husband Mohamed Hazem, for his unremitting encouragement, approvals, acknowledgements and his love.

I want to thank God for his help and his mercy.

Abstract

Wind energy is now becoming one of the fastest emerging renewable energy sources. The share of wind power in the total energy mix is rapidly increasing worldwide; as it is one of the most cost efficient energy sources. Thus, wind turbines with different power ratings are being connected to the power system. These wind turbines utilize different technologies. Variable speed technology, as one of these technologies, attracts considerable interest due to the development of power electronic control capabilities. It allows a flexible and decoupled active and reactive power control. Nowadays, the variable speed Doubly Fed Induction Generator (DFIG) based wind turbine concept is the most popular wind power generator in the wind power industry. A thorough understanding of the modeling, control, the steady state and dynamic analysis of this machine type is thus necessary to optimally extract the power from the wind and accurately predict its performance.

In this thesis, as a first step, the different issues regarding the penetration of wind energy into the power grid, focusing on the Egyptian Transmission Grid Codes (ETGCs) are discussed. The different models comprising the mechanical system of the doubly fed induction generator together with its associated control were then presented. Next, the entire electrical system of the generator was discussed concentrating on both modeling and control of this system.

As a second step, the wind farms' interaction with the power system is investigated under different case studies. In the performed case studies, the wind farms were represented using the aggregated model. The DIgSILENT Power Factory software package, is used as the main simulation tool.

The presented case studies, based on the Egyptian transmission power system data, were used to assess the dynamic behavior of the doubly fed induction generator wind turbine when subjected to a three-phase short circuit at the point of common coupling and to evaluate the performance of a power network comprising two different types of wind farms, FSIG and DFIG, when exposed to a system disturbance and to analyze their interaction during the fault.

The dynamic simulation results have shown that the response of the different networks under study are promising.

Keywords—aggregated model, digsilent, doubly fed induction generator, dynamic response, system support, transmission grid connection, wind turbine.

Contents

Acknowledgments	i
Abstract	ii
List of Figures	vii
Abbreviations	xi
Symbols	xiii
Chapter One Introduction	1
1.1 Background	1
1.2 Problem Statement and Motivation	1
1.3 Objectives and Outlines of the Thesis	3
Chapter Two A Review of Modeling Wind Farms in	7
Power System Simulation Studies	
2.1 Background	7
2.2 Introduction	7
2.3 Grid Connection of Wind Farms	9
2.3.1 Grid Codes	9
2.3.2 Need for Accurate Models	11
2.4 Modeling Wind Farms	11
2.4.1 Aggregated Modeling of Wind Farms	16
2.4.2 Verification with Measurement Results	18
2.4.3 Verification with Other Simulation	19
Platforms	
2.4.4 Studies with Other Simulation	21
Platforms	
2.5 Modeling and Simulation of Doubly Fed	23
Induction Generator Coupled with Wind	
Turbine	
Chapter Three Wind Turbine Generator	29
Technologies	
3.1 Background	29
3.2 Wind Turbine Components	29
3.3 Description of Wind Energy Conversion	32
3.4 Wind Turbine Concepts	32
3.4.1 Characteristics of Different Wind Turbine	33
Concepts	

3.5 Comparison of Variable Speed against Fixed	
Speed Systems	38
3.6 Wind Turbine Power Curve	39
Chapter Four Wind Power Penetration Issues and	
Wind Farm Grid Connection Codes	45
4.1 Background	45
4.2 Grid Codes' Goals and Challenges	46
4.3 Impact on Power System Stability	49
4.4 Egyptian Transmission Grid Codes (ETGCs)	51
4.4.1 Momentarily Voltage Drops	54
4.4.2 Active Power Control	57
4.4.2.1 Active Power Output	57
4.4.2.2 Active Power Reduction due to Over	58
Frequency	
4.4.2.3 Active Power Set-Point Control	59
4.4.3 Reactive Power Control	60
Chapter Five Modeling and Control of the Doubly	62
Fed Induction Generator Mechanical System	
5.1 Background	62
5.2 Prime Mover and Controller	64
5.3 Aerodynamic Model	
5.4 Drive Train Model	
5.5 Blade Angle Control	70
Chapter Six Electrical System and Control of the	73
Doubly Fed Induction Generator Wind Turbine	
6.1 Background	73
6.2 The Doubly-Fed Induction Generator Wind	74
Turbine System	
6.2.1 DFIG Steady State Analysis	76
6.2.2 Active Power Characteristics	
6.2.3 Reactive Power Characteristics	
6.2.4 Dynamic Model of the DFIG	
6.2.5 The Frequency Converter	
6.3 Frequency Converter Control	
6.3.1 Reference Frames for Control	90
6.3.2 Rotor Side Converter Control	93

6.3.3 Grid Side Converter Control	96
Chapter Seven Modeling and Simulation Aspects of	98
Wind Farms	
7.1 Background	98
7.2 Aggregated Model for Power System Studies	99
7.3 Case Study Scenarios	100
7.3.1 Case Study "1"	100
7.3.1.1 Dynamic Response of the Wind	102
Turbine's Electrical System	
7.3.1.2 Dynamic Response of the Wind	104
Turbine's Mechanical System	
7.3.2 Case Study "2"	106
7.3.2.1 Normal Operation	108
7.3.2.2 Fault Analysis Study	110
7.3.2.3 Impact Analysis of the DFIG Wind	117
Farm on the nearby Connected FSIG	
Wind Farm	
Chapter Eight Conclusions and Future Work	121
References.	125
Publications	137
Appendix	138

List of Figures

Figure 3.1	Detailed view of the components of a	30
Figure 3.2	wind turbineGeneral working principle of wind	32
	power generation	
Figure 3.3		34
D: 2 4	concept	35
Figure 3.4	Type B: Variable speed wind turbine	33
E' 2 5	with variable rotor resistance	26
Figure 3.5	Type C: Variable speed with partial	36
Г' 2.6	scale frequency converter	27
Figure 3.6	Type D: Variable speed with full-scale	37
	frequency converter with induction or	
	synchronous generators	20
Figure 3.7	Type D: Variable speed with full-scale	38
	frequency converter with multipole	
	synchronous generator	
Figure 3.8	Wind turbine power curve and	40
	operating zones	
Figure 3.9	The power curves of constant speed	43
	stall controlled (dashed) and variable	
	speed pitch controlled (solid) wind	
	turbines	
Figure 4.1	Diagram illustrating the necessity of	48
	utilizing grid codes in the power	
	system	
Figure 4.2	Voltage curve defining the Egyptian	55
C	fault-ride through requirement	
Figure 4.3	Concept of voltage support by	56
O	supplying reactive current throughout	
	grid faults	
Figure 4.4	Conditions for the wind farm output	58
6	power in the event of a change in either	
	the grid frequency or the grid	
	voltage	

Figure 4.5	1 1	59
	case of over frequencies	
Figure 4.6	Active and reactive power diagram of the wind farm	60
Figure 5.1	Modeling scheme of mechanical system and control	63
Figure 5.2	Two-mass model for the drive train	68
\mathcal{C}	Pitch angle control model	71
Figure 6.1	DFIG-based wind turbine	75
8	configuration	
Figure 6.2	DFIG equivalent circuit at steady state.	76
Figure 6.3	Flow of power within the doubly fed induction generator	77
Figure 6.4	DFIG Torque-speed characteristic when applying various rotor voltages	79
Figure 6.5		81
	rotor resistance	
Figure 6.6	Active power output of DFIG for the	83
	stator side (a), and the rotor side (b)	
Figure 6.7	Reactive power output of DFIG for the	84
	stator side (a), and the rotor side (b)	
Figure 6.8	A six-pulse bridge back-to-back self-	87
	commutated converter	
Figure 6.9	Overall scheme of the DFIG variable	90
	speed wind turbine concept together	
	with its associated control systems	
Figure 6.10	Different reference frames involved in	93
	the control of the DFIG	
Figure 6.11	Rotor side converter control scheme	95
Figure 6.12	Grid side converter control scheme	97
Figure 7.1	Wind farm grid connection model	101
Figure 7.2	Grid voltage	103
Figure 7.3	Active power production	103
Figure 7.4	Reactive power production	104

Figure 7.5	Generator rotor current	104
_	Electrical and mechanical torque of the generator	105
	Generator speed	105
	Pitch angle	106
_	Power network under study including	107
	wo different types of wind farms	100
•	nstantaneous current of the fixed speed aduction generator under normal	108
	perating conditions	
Figure 7.11 In	nstantaneous voltage of the fixed speed induction generator under normal	109
	perating conditions	
Figure 7.12 In	nstantaneous current of the doubly fed induction generator under normal	109
	perating conditions	
Figure 7.13 In	nstantaneous voltage of the doubly fed	110
	nduction generator under normal	
	perating conditions	111
_	Fault current contribution of the fixed	111
	peed induction generator	111
	Voltage at the fixed speed induction generator terminals	111
fe	Fault current contribution of the doubly ed induction generator (without	112
	rowbar)	
8	Voltage at the doubly fed induction generator terminals (without	112
	Crowbar)	113
fe	Fault current contribution of the doubly ed induction generator (with	113
	rowbar)	
	Voltage at the doubly fed induction generator terminals (with crowbar)	114
	` '	

Figure 7.20 Voltage at both the fixed speed a	and the 115
doubly fed induction generator v	wind
farm terminals	
Figure 7.21 Voltage at the medium voltage b	us of 115
the fixed speed and the doubly for	ed
induction generator wind farms.	
Figure 7.22 Active and reactive power of the	fixed 116
speed induction generator wind	
farm	
Figure 7.23 Active and reactive power of the	
fed induction generator wind far	m
Figure 7.24 Voltage at the point of common	118
coupling	
Figure 7.25 Voltage at the wind farm termina	ıl 119
Figure 7.26 Active power output of the wind	farm 119
Figure 7.27 Reactive power output of the wir	nd 119
farm	•••••
Figure 7.28 Speed of the fixed speed induction	on 120
generator	
Figure 7.29 Torque fluctuations of the fixed s	speed 120
induction generator	

Abbreviations

DC Direct Current

DCSG Direct Current Synchronous Generator

DFIG Doubly Fed Induction Generator

DPC Direct Power Control

DSL Dynamic Simulation Language

DTC Direct Torque Control

EMTP Electro Magnetic Transients Program

ETGCs Egyptian Transmission Grid Codes

FF Fundamental Frequency

FSIG Fixed Speed Induction Generator

GSC Grid Side Converter

GTO Gate Turn-Off Thyristor

GVRF Grid Side Converter Voltage Oriented

Reference Frame

IGBT Insulated Gate Bipolar Transistor

LVRT Low Voltage Ride Through

MPPT Maximum Power Point Tracking

MV Medium Voltage

PCC Point of Common Coupling

PI Proportional Integral

PLL Phase Locked Loop

PMSG Permanent Magnet Synchronous

Generator

PWM Pulse Width Modulation

RMS Root Mean Square

RRF Rotor Reference Frame

SCIG Squirrel Cage Induction Generator

SFRF Stator Flux Reference Frame

SL Switching Level

STATCOM Static Synchronous Compensator

THD Total Harmonic Distortion

TSOs Transmission System Operators

VC Vector Control

WECS Wind Energy Conversion System

WRIG Wound Rotor Induction Generator