IMPROVING FLOWERING, PRODUCTIVITY AND FRUIT QUALITY OF PICUAL OLIVES USING SOME GROWTH PROMOTERS AND NATURAL EXTRACTS

By

AHMED MOHAMED HASSAN MAHMOUD

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2010M.Sc. Agric. Sc (Pomology), Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

IMPROVING FLOWERING, PRODUCTIVITY AND FRUIT QUALITY OF PICUAL OLIVES USING SOME GROWTH PROMOTERS AND NATURAL EXTRACTS

By

AHMED MOHAMED HASSAN MAHMOUD

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2010M.Sc. Agric. Sc (Pomology), Ain Shams University, 2015

This thesis for Ph.D	. degree has been Ap	proved by:
Dr. Ayman El-Saye	d Ahmed Shaban	
Prof. of Pomolog	gy, Faculty of Agricult	cural, Cairo University.
Dr. Mohamed Abou	Rawash Ali Badr	
Prof. Emeritus	of Pomology, Faculty	y of Agriculture, Ain Shams
University.		
Dr. Rawhya Bedeir	Mohamed	
Associate Prof.	Emeritus of Pomolog	y, Faculty of Agriculture, Air
Shams Universit	y.	
Dr. Nazmy Abd El-	Hamed Abd El-Ghan	y
Prof. of Pomolog	gy, Faculty of Agricult	cure, Ain Shams University.

Date of Examination: 15 / 6 / 2019

IMPROVING FLOWERING, PRODUCTIVITY AND FRUIT QUALITY OF PICUAL OLIVES USING SOME GROWTH PROMOTERS AND NATURAL EXTRACTS

By

AHMED MOHAMED HASSAN MAHMOUD

B.Sc. Agric. Sc (Horticulture), Ain Shams University, 2010 M.Sc. Agric. Sc (Pomology), Ain Shams University, 2015

Under the supervision of:

Dr. Nazmy Abd El-Hamed Abd El-Ghany

Prof. of Pomology, Dept. of Horticulture, Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Rawhya Bedeir Mohamed

Associate Prof. Emeritus of Pomology, Dept. of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Hassan Said Ahmed

Researcher Prof. of Pomology, Dept. of Pomology, National Research Center.

ABSTRACT

Ahmed Mohamed Hassan Mahmoud: Improving flowering, productivity and fruit quality of Picual olives using some growth promoters and natural extracts. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2019.

This study was carried out during 2017 and 2018 seasons on adult olive trees cv. Picual (8 years old) in a private orchard located at Cairo Ismailia Desert Road, (about 80 Km from Cairo), Ismailia Governorate, Egypt. Trees were grown in sandy soil, under drip irrigation system, uniform in shape and received the common horticultural practices. The Study involved three individual experiments, first experiment was designed to study the effect of spraying olive trees with algae and moringa leaves extarcts at different concentrations and dates (i.e. mid of November or mid of December) where each date had a separate group of trees. Second experiment was designed to study the effect of spraying olive trees with putrescine (PUT), salicylic acid (SAL) and ascorbic acid (ASC) at different concentrations and dates (i.e. mid of November and mid of December) and each date had a separate group of trees. The third experiment was designed to study the effect of spraying olive trees with nano-boron and nano-zinc at different concentrations on vegetative growth, leaf pigments and mineral content, flowering, fruit set, yield and fruit physical and chemical properties of Picual olive trees. However, in the first experiment, results indicated that all different spraying treatments of algae and moringa extract at different spraying dates had a positive effect on vegetative growth, leaf mineral contents, fruit set, yield and fruit chemical properties in comparison with the control. As for the second experiment, results revealed that all different spraying treatments of some growth active substances at different spraying dates had a positive effect on most of parameters in comparison with the control. Concerning the third experiment, results illustrated that all different spraying treatments of nano-boron and nano-zinc had a positive effect on the same parameters as compared with the control. Treatment of nano-boron at 20 ppm + nano-zinc at 200 ppm at three times (i.e. the first one at mid of December, the second before the flowering and the third one during full bloom) was the most effective treatments to enhance vegetative growth, leaf minerals content, flowering, fruit set, yield, fruit quality, and oil content and quality.

Key words: Olive (*Olea europaea*) – Picual – Algae extract – Moringa leaves extract – Putrescine – Salicylic acid – Ascorbic acid - Nanoboron - Nanozinc – Vegetative growth – Flowering – Leaf mineral content - Fruit set – Yield – Fruit quality – Oil properties.

ACKNOWLEDGEMENTS

First of all, full praise and gratitude is to **Allah** for his blessings

Words cannot express my gratitude and I am honored to convey my deepest thanks to my principal supervisor **Prof. Dr. Nazmy Abd Elhamid Abd El-Ghany** Professor of Pomology, Vice President of Ain Shams University for Community Service and Environmental Development, for his support, advices, guidance and suggestions that benefited her much in the success of this study.

I would also like to thank my supervision **Dr. Rawhya Bedeir Mohamed** Associate Professor Emeritus of Pomology, Faculty of Agriculture, Ain Shams University, for advices, guidance and valuable comments to me during this work.

I would like to thank my supervision **Prof. Dr. Hassan Sayed Ahmed** Professor of Pomology, Department of Pomology, National Research Center, for his supervision, helping, guidance and gracious support throughout of my work.

My deepest gratitude to **Prof. Dr. Laila Foaud Haggag** Professor Emeritus of Pomology, Department of Pomology, National Research Center, who guided and still guiding me and for her supervision, support and encouragement.

In addition, I would like to thank **Dr. Ismael Abd Ellah Gnidy**, Associate Professor of Pomology, Dept. of Pomology, National Research Center, for his supervision, helping, support me during this work.

Special thanks for all staff members in pomology Dept. National Research Center for their valuable help during carring out the experiments of this work.

I am particularly grateful to my family, specially my father and my mother for their understanding, patience and loving encouragement.

CONTENTS

LIST OF TABLES	Page V
LIST OF PLATES	X
1- Introduction	1
	4
2- Review of Literature	•
3- Materials and Methods	33
4- Results and Discussion	45
4-1- First Experiment:-	45
4-1-1- Vegetative growth	45
4-1-1-1 Shoot length	45
4-1-1-2- Number of leaves per shoot	45
4-1-1-3- Leaf area	46
4-1-2- Leaf pigments content	49
4-1-2-1- Leaf content of chlorophyll A	49
4-1-2-2- Leaf content of chlorophyll B	50
4-1-2-3- Leaf content of carotene	50
4-1-3- Leaf mineral content	53
4-1-3-1- Leaf N	53
4-1-3-2- Leaf P	54
4-1-3-3- Leaf K	56
4-1-3-4- Leaf Fe	57
4-1-3-5- Leaf Zn	59
4-1-4- Flowering characteristics	60
4-1-4-1- Number of inflorescences per meter	60
4-1-4-2- Number of total flowers per inflorescence	62
4-1-4-3- Sex ratio	62
4-1-5- Fruit set and yield	64
4-1-5-1- Final fruit set	64
4-1-5-2- Fruit drop	64
4-1-5-3- Yield	65

4-1-6- Physical fruit characteristics	68
4-1-6-1- Fruit weight	68
4-1-6-2- Pulp weight	68
4-1-6-3- Pulp:seed ratio	69
4-1-6-4- Fruit length	70
4-1-6-5- Fruit diameter	72
4-1-7- Chemical fruit characteristics	75
4-1-7-1- Fruit moisture percentage	75
4-1-7-2- Fruit oil percentage	75
4-1-8- Oil properties	78
4-1-8-1- Oil acidity	78
4-1-8-2- Peroxide value	78
4-1-8-3- Iodine value	79
4-2- Second Experiment:-	82
4-2-1- Vegetative growth	82
4-2-1-1- Shoot length	82
4-2-1-2- Number of leaves per shoot	82
4-2-1-3- Leaf area	83
4-2-2- Leaf pigments content	86
4-2-2-1- Leaf content of chlorophyll A	86
4-2-2- Leaf content of chlorophyll B	87
4-2-2-3- Leaf content of carotene	87
4-2-3- Leaf mineral content	90
4-2-3-1- Leaf N	90
4-2-3-2- Leaf P	91
4-2-3-3- Leaf K	93
4-2-3-4- Leaf Fe	93
4-2-3-5- Leaf Zn	94
4-2-4- Flowering characteristics	97
4-2-4-1- Number of inflorescences per meter	97

4-2-4-2- Number of total flowers per inflorescence	97
4-2-4-3- Sex ratio	98
4-2-5- Fruit set and yield	101
4-2-5-1- Final fruit set	101
4-2-5-2- Fruit drop	101
4-2-5-3- Yield	102
4-2-6- Physical fruit characteristics	105
4-2-6-1- Fruit weight	105
4-2-6-2- Pulp weight	105
4-2-6-3- Pulp:seed ratio	106
4-2-6-4- Fruit length	108
4-2-6-5- Fruit diameter	109
4-2-7- Chemical fruit characteristics	112
4-2-7-1- Fruit moisture percentage	112
4-2-7-2- Fruit oil percentage	112
4-2-8- Oil properties	115
4-2-8-1- Oil acidity	115
4-2-8-2- Peroxide value	115
4-2-8-3- Iodine value	116
4-3- Third Experiment:-	119
4-3-1- Vegetative growth	119
4-3-1-1- Shoot length	119
4-3-1-2- Number of leaves per shoot	119
4-3-1-3- Leaf area	119
4-3-2- Leaf pigments content	121
4-3-2-1- Leaf content of chlorophyll A	121
4-3-2-2- Leaf content of chlorophyll B	121
4-3-2-3- Leaf content of carotene	122
4-3-3- Leaf mineral content	123
4-3-3-1- Leaf N	123

4-3-3-2- Leaf P	123
4-3-3-3- Leaf K	124
4-3-3-4- Leaf Fe	125
4-3-3-5- Leaf Zn	126
4-3-3-6- Leaf B	126
4-3-4- Flowering characteristics	127
4-3-4-1- Number of inflorescences per meter	127
4-3-4-2- Number of total flowers per inflorescence	127
4-3-4-3- Sex ratio	128
4-3-5- Fruit set and yield	129
4-3-5-1- Final fruit set	129
4-3-5-2- Fruit drop	129
4-3-5-3- Yield	130
4-3-6- Physical fruit characteristics	131
4-3-6-1- Fruit weight	131
4-3-6-2- Pulp weight	132
4-3-6-3- Pulp:seed ratio	133
4-3-6-4- Fruit length	133
4-3-6-5- Fruit diameter	133
4-3-7- Chemical fruit characteristics	135
4-3-7-1- Fruit moisture percentage	135
4-3-7-2- Fruit oil percentage	135
4-3-8- Oil properties	136
4-3-8-1- Oil acidity	136
4-3-8-2- Peroxide value	137
4-3-8-3- Iodine value	137
4-3-3- fruit mineral content	138
4-3-3-1- fruit content of Zn	138
4-3-3-2- fruit content of B	140
5-Summary and Conclusion	141
6-References	150
7-Arabic Summary	

LIST OF TABLES

No		Page
Table (1):	Some physical and chemical analysis of the orchard soil.	33
Table (2):	Chemical characteristics of water weal used for	33
	irrigation in the present study.	
Table (3):	Chemical composition of some macro and micro- nutrients and growth substances of blue green algae extract used in the study.	34
Table (4):	Chemical composition of the used morenga leaves.	35
Table (5):	Effect of foliar applications with algae and moringa	48
	leaves extracts on shoot length and no. of leaves /	
	shoot of Picual olive trees in 2017 and 2018 seasons.	
Table (6):	Effect of foliar applications with algae and moringa	49
	leaves extracts on leaf area of Picual olive trees in	
	2017 and 2018 seasons.	
Table (7):	Effect of foliar applications with algae and moringa	52
	leaves extracts on chlorophyll A and B content of	
	Picual olive leaves in 2017 and 2018 seasons.	
Table (8):	Effect of foliar applications with algae and moringa	53
	leaves extracts on Carotene content of Picual olive	
	leaves in 2017 and 2018 Seasons.	
Table (9):	Effect of foliar applications with algae and moringa	55
	leaves extracts on nitrogen and phosphorus	
	percentages of Picual olive leaves in 2017 and 2018	
	seasons.	
Table (10):	Effect of foliar applications with Algae and Moringa	56
	leaves extracts on potassium percentage of Picual	
	olive leaves in 2017 and 2018 seasons	