The Effect of The Reaction Layer Formed During The Pressing Technique on Microtensile Bond Strength of Resin Cement to Two Lithium Disilicate Materials

A thesis submitted for the partial fulfillment of the Master Degree requirements in Crown & Bridge, Faculty of Dentistry,

Ain Shams University.

By

Walid Mohamed Gomaa B.D.Sc.

Faculty of Oral and Dental Medicine, Future University.

2012

Faculty of Dentistry,
Ain Shams University
2019

Supervisors:

Dr. Amina Mohamed Hamdy

Professor of Fixed Prosthodontics

Crown & Bridge department

Faculty of Dentistry, Ain Shams University

Dr. Ahmad Khaled Aboelfadl

Associate Professor of Fixed Prosthodontics

Crown & Bridge department

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2019

بسم الله الرحمن الرحيم

﴿ قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا ۗ ﴾ إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ ﴾

صدق الله العظيم (آيه٣٢ سورة البقره)

Acknowledgment

I express my deepest gratitude to **Dr. Amina Mohamed Hamdy** Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for her constant guidance, support, motivation and untiring help during this work. Her depth knowledge has been extremely beneficial for me.

I express my profound sense of reverence to my supervisor Dr. Ahmad Khaled Aboelfadl Associate Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for the time, support, motivation and guidance, he devoted to me. His high moral ethics was a model for me.

I would like to thank also **Ain shams Fixed Prosthodontics staff members** for offering me much support, effort throughout the whole work.

Dedication

I would like to dedicate this work to my parents and beloved wife for their support.

Content

List of Figures	ti
List of Tables	vi
Introduction	1
Review of literature	4
Statement of the problem	26
Aim of the Study	27
Materials and Methods	28
Results	64
Discussion	76
Summary	87
Conclusion	90
Recommendations	91
References	92
Arabic Summary	

List of figures

Figure (1): Overview of the proposed classification system of all-ceramic and cera	mic-like
materials. (Gracis et al, 2015)	6
Figure (2): IPS® e.max Press	29
Figure (3): Rosetta [®] SP	30
Figure (4): TOTALCEM TM Adhesive Resin Cement automix syringe	31
Figure (5): PORCELAIN ETCHANT TM	31
Figure (6): PORCELAIN PRIMER TM	32
Figure (7): ALL-BOND UNIVESAL TM	33
Figure (8): ChemiCore TM	33
Figure (9): Material abrasivo TM	34
Figure (10): IPS® e.max Press Invex Liquid TM	34
Figure (11): Teflon mold	37
Figure (12): Application of separating medium in the mold	37
Figure (13): Electric Wax device.	38
Figure (14): Application of wax in the mold	38
Figure (15): Wax Flushing with mold edges	38
Figure (16): Removal of disc from the mold.	38
Figure (17): a digital caliper for measuring disc thickness giving 3 mm	39
Figure (18): Wax discs	39
Figure (19): attaching sprues to discs.	40
Figure (20): Attaching sprued discs to ring base after sealing its opening by wax	40
Figure (21): Mixing the investement material under vaccum	41
Figure (22): Filling the ring with the investment material on the vibrator	41
Figure (23): Filling the ring with the investment material on the vibrator	42
Figure (24): Positioning of ring gauge and ring was allowed to set	42
Figure (25): Placement of investment ring inside the preheating furnace	43
Figure (26): Placement of IPS e.max Press ingot into the hot ring	43
Figure (27): Placement of Rosetta SP ingot into the hot ring	44

Figure (28): Loaded investment ring	44
Figure (29): Placement of the loaded investment ring in center of hot press furnace	45
Figure (30): Starting the selected press program	45
Figure (31): Placement of the investment ring on a cooling grid to cool after its remo	val
from the press furnace	46
Figure (32): Marking the length of the Alox plunger	46
Figure (33): Sectioning of the investment ring by a separating disc	47
Figure (34): Rough divestment	47
Figure (35): Fine divestment	47
Figure (36): Immersing the discs in the Invex Liquid for reaction layer removal	48
Figure (37): sandblasting by aluminum oxide particles	48
Figure (38): Separation of sprues by suitable separating disks	49
Figure (39): Smoothening of the sprue attachment point by suitable disks	49
Figure (40): Polishing the discs with suitable polishing disks	50
Figure (41): Checking disc thickness by the caliper	50
Figure (42): Sandblasting by aluminum oxide particles	51
Figure (43): Application of HF acid	52
Figure (44): Porcelain primer	52
Figure (45): Teflon mold for formation of composite discs	53
Figure (46): Injection of dual cured core build-up composite inside the teflon mold u	sing the
automix tip	53
Figure (47): Curing of composite discs to ensure optimal polymerization	54
Figure (48): Application of universal bond on ceramic samples	54
Figure (49): A teflon mold of 6.1 mm thickness	55
Figure (50): Application of the resin cement on the treated surface of the ceramic pla	te using
automix tip	55
Figure (51): Placement of fixed load (500 g) above the mold	56
Figure (52): Light curing of resin-ceramic block using blue-phase LED unit	
Figure (53): Resin-Ceramic block (6.1 mm thickness)	56
Figure (54): Resin-Ceramic block fixed on an epoxy resin cylinder	57
Figure (55): Resin-Ceramic block vertically sectioned into serial slabs	57
Figure (56): The resin-ceramic block rotated 90° to make additional vertical cuts	58

Figure (57): Perpendicular cuts in the resin-ceramic block
Figure (58): A micro-beam of 1mm ² cross-sectional area
Figure (59): A micro-beam aligned and glued in the central groove of the Geraldeli's jig59
Figure (60): Universal testing machine
Figure (61): Nikon MA 100 stereoscopic japan (50 x magnification)61
Figure (62): Cohesive failure
Figure (63): Adhesive failure
Figure (64): Mixed failure
Figure (65): Bar chart showing average Micro-tensile bond strength (Mpa) for different
types of ceramic materials
Figure (66): Bar chart showing average Micro-tensile bond strength (Mpa) for different
surface treatments67
Figure (67): Bar chart showing average Micro-tensile bond strength (Mpa) with and without
reaction layer
Teaction layer
Figure (68): Stacked bar chart showing percentage of mode of failure in different ceramic
materials69
Figure (69): Pie chart showing percentage of mode of failure in IPS E-Max Press70
Figure (70): Pie chart showing percentage of mode of failure in Rossetta SP70
Figure (71): Stacked bar chart showing percentage of mode of failure in different surface
treatments
Figure (72): Pie chart showing percentage of mode of failure in in samples treated with 60
seconds of etching and 110µm particle size sandblasting
Figure (73): Pie chart showing percentage of mode of failure in samples treated with 20
seconds of etching and 50µm particle size sandblasting

Figure (74): Stacked bar chart showing percentage of mode of failure with and witho	out a
reaction layer	74
Figure (75): Pie chart showing percentage of mode of failure in in samples without relayer	
Figure (76): Pie chart showing percentage of mode of failure in in samples with react	tion
layer	75

List of Tables

List of Tables

Table (1): Materials used in this study28
Table (2): Technical data of IPS® e.max Press
Table (3): Technical data of Rosetta® SP
Table (4): Chemical composition of TOTALCEM TM31
Table (5): Chemical composition of IPS® e.max Press Invex Liquid TM34
Table (6): Specimen Grouping36
Table (7): Descriptive statistics of micro-tensile bond strength (Mpa)64
Table (8): Effect of different variables and their interactions on Micro-tensile bond strength (Mpa)
Table (9): Mean ± standard deviation (SD) of micro-tensile bond strength (Mpa) for different ceramic materials
Table (10): Mean ± standard deviation (SD) of micro-tensile bond strength (Mpa) for different surface treatments
Table (11): Mean ± standard deviation (SD) of micro-tensile bond strength (Mpa) with and without reaction layer
Table (12): Frequencies (n) and Percentages (%) of mode of failure in different ceramic materials
Table (13): Frequencies (n) and Percentages (%) of mode of failure in different surface treatments
Table (14): Frequencies (n) and Percentages (%) of mode of failure with and without a reaction layer74

Introduction

Esthetic dentistry is concerned with restoring the natural teeth appearance by direct and indirect means of restoration. It is a very challenging and demanding field of dental science

In the past few years, esthetic dentistry has witnessed advancement in both dental materials and techniques. The dental ceramics is used routinely in modern dental practices. This is due to the great qualities it offers as a dental restorative material in terms of esthetics, physical and mechanical properties:

Glass ceramics are highly translucent because of the glassy phase present at the grain boundary that forms non-porous structure and the crystals that reduce light scattering. They have higher crystalline content than powder porcelain so they have higher mechanical properties and reduce crack formation. They are durable and can be bonded to tooth structure by resin cements. Their fabrication is easier than that of the traditional ceramics. They don't shrink much after firing. Then, two generations of pressable ceramics were introduced which are *Leucite reinforced glass ceramics* (IPS Empress 1) and *Lithium disilicate glass ceramic* (IPS Empress 2).

Lithium disilicate glass ceramics commonly used type of dental ceramics nowadays in dental practice is used to restore anterior and posterior teeth. It provides high esthetic properties for anterior teeth and high physical and mechanical properties for posterior teeth restorations.

Introduction

The 1st generation is the *IPS Empress2* which was introduced as SiO₂-Li₂O by Ivoclar Vivadent (AG, Schaan, Liechtenstein). The 2nd generation that was also launched by Ivoclar Vivadent is the *IPS e.max*, in which the translucency and the physical properties were improved through different firing process

Nowadays, there are other lithium disilicate ceramics in the market as Rosetta SP press and Rosetta SM .

Lithium disilicate materials are supplied in two forms, pressing type and milling CAD/CAM type. The pressed lithium disilicate ceramics enable ceramic restorations with thin marginal thickness and a slight higher strength compared to milled ceramics. This is considered a huge advantage for the fabrication of very thin types of restorations.

Dental ceramics are used in wide range of fixed dental restorations such as, laminate veneers, inalys, onlays, vonlays, endocrowns, crowneers, crowns and bridges The smile makeover and dental smile designs required thin type of dental restorations. These restorations may require a minimal or no reductions to the natural tooth structure.

These restorations depend on the adhesiveness to the natural tooth structure therefore dental markets supplies many types of adhesive materials such as light cure resin cement, dual cure resin cement and self cure resin cement.

Unfortunately, the pressing type technique is accompanied by a phenomenon known as the reaction layer. Some manufacturers

Introduction

claimed that their lithium disilicate glass ceramics has a least reaction layer.

Review of Literature

Review of Literature

It's out of discussion that ceramic restorations are the treatment of choice in cases that requires esthetic considerations. This led to a continuous modification in their composition, microstructure and processing in order to achieve a satisfactory level of clinical performance¹.

Dental Ceramics

In the past decades, ceramic materials improvement has paced significantly and their usage have been more abundant. It was due to their biological compatibility, translucency, fluorescence and chemical stability. They also have a coefficient of thermo-linear expansion close to dental composition, as well as compression and abrasion resistance. These properties enable it to perfectly mimic the appearance of natural teeth.².

Several definitions have been considered to describe and define ceramics. The traditional definition refers to the term *ceramic* as any product made from a nonmetallic inorganic material usually by firing at a high temperature to achieve desirable properties. The more limiting term *porcelain* points to a specific compositional range of ceramic materials originally made by mixing kaolin (hydrated aluminosilicate), quartz (silica), in addition to feldspars (potassium and sodium aluminosilicates), and firing at high temperature^{3 4 5}. On the other hand, the 2013 version of the ADA Code on Dental Procedures and Nomenclature⁶ defines the term porcelain/ceramic as pressed, fired, polished, or milled materials containing predominantly inorganic