

Bioremediation of heavy metals polluted soil and its impact on *Phaseolus vulgaris* L.

Thesis Submitted for partial fulfillment of Master Degree of Science in Botany

Rabab El-Sayed El-Badawy Ismail B.Sc. (2011) - Botany

> Ain ShamsUniversity Faculty of Science Botany Department (2019)

Bioremediation of heavy metals polluted soil and its impact on *Phaseolus vulgaris* L.

Thesis Submitted for partial fulfillment of Master Degree of Philosophy of Science in Botany

By Rabab El-Sayed El-Badawy Ismail

B.Sc. (2011) – Botany

Supervisors

Prof.Dr.Afaf Ahmed Ali

Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University

Prof.Dr.Karima Hamed Salama

Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University

Prof.Dr.Hossam El-Den Ahmed Shawky

Professor of Chemistry, Desert Research Center

Ain Shams University Faculty of Science Botany Department (2019) Name: Rabab El-Sayed El-Badawy Ismail

Title of thesis: Bioremediation of heavy metals polluted soil and its impact on

Phaseolus vulgarisL.

Degree: Master Degree Of Science in Botany

This thesis for Masterdegree has been approved by:

Supervision committee:

Prof. Dr. Afaf Ahmed Ali

Professor of Plant Physiology.

Botany Department, Faculty of Science, Ain Shams University.

Prof. Dr.KarimaHamedSalama

Professor of Plant Physiology.

Botany Department, Faculty of Science, Ain Shams University.

Prof. Dr. Hussam El-Den Ahmed Shawki

Professor of Chemistry. Desert research center.

Examination committee:

Prof. Dr. Hanaa Mohamed Salem Foda

Professor of Plant physiology, Botany Department, Faculty of Science, Al-Azhar University, Girls branch.

Prof.Dr. Hanan El-Sayed El-Sayed.

Professor of Plant physiology, Botany Department, Faculty of Science, Al-Zagazig University.

Prof. Dr. Afaf Ahmed Ali

Professor of Plant Physiology.

Botany Department, Faculty of Science, Ain Shams University.

Prof. Dr.KarimaHamedSalama

Professor of Plant Physiology.

Botany Department, Faculty of Science, Ain Shams University.

Date: / /2019

This thesis has not been previously submitted for any degree at this or any other university.

The references in the text will show specifically the extent to which I have availed myself of the work of other authors.

Rabab El-Sayed El-Badawy Ismail

To my husband,
my little daughter,
my brothers and
mysisters.

To the soul of my beloved father and Mother.

AKNOWLEDGEMENT

Firstly and Finally Thanks to Allah for helping me to finish this work

I would like to express my sincere gratitude to Prof. Dr.Afaf Ahmed Ali, Professor of plant physiology, Botany Department, Faculty of Science, Ain Shams University, Prof. Dr. KarimaHamedSalama, Professor of plant physiology, Botany Department, Faculty of Science, Ain Shams University and Prof. Dr. Hossam El-Den Ahmed Shawqi, Professor of chemistry, Desert Research Centre, for their continuous support, kind supervision, standing beside me in every steps of this work. Thank very much for being learn how to think scientifically and solve any problem facing in the work. I am also thankful to Prof. Dr. Yosria Hassan Sheteh, Professor of microbiology, Faculty of Science, Ain Shams University for her valuable help and Prof. Dr. EzzatAbd El-Mohsen Kotb, Professor of Plant Soil and Water Research Department, NuclearResearch Center, Atomic Energy Authority, Egypt and the farmer for helping me to cultivate in Al-Gabal Al-Asfar farm.

Iam especially grateful to Prof. Dr. **HanaaShabara**, Head of Botany Department, Faculty of Science, Ain Shams University, for her encouragement and valuable help.

My thanks are also to the former heads of the department and to all staff members in Botany Department, Faculty of Science, Ain Shams University, for their help and support throughout my work.

I am also greatly indebted to my parents, my husband, my lovely little daughter, my family and my colleagues and all the staff in the department.

Contents

Contents	Page
List of abbreviations	i
List of tables	iii
List of figures	vi
Introduction	1
Materials and methods	30
Materials	30
Growth condition and treatments	30
Trial experiment	
Selection of microorganism	30
Cultivation	31
Pot experiment	32
Field experiment	34
Methods	
Extraction and estimation of elements in the plants	35
Extraction and estimation of elements in the soil	36
Extraction and estimation of organic acids in the soil	36
Determination of relative growth rate	37
Extraction and estimation of certain metabolites	
Extraction and estimation of photosynthetic pigments	37

Extraction and estimation of carbohydrates	
Estimation of total soluble sugars	38
Estimation of sucrose	39
Estimation of polysaccharides	39
Extraction and estimation of total soluble proteins	40
Extraction and estimation of malondialdehyde	41
Extraction and estimation of hydrogen peroxide	41
Extraction and estimation of proline	42
Extraction and estimation of certain antioxidant compounds	
Extraction and estimation of ascorbic acid	43
Extraction and estimation of total reduced glutathione	44
Extraction and estimation of of total Phenols	45
Extraction and assaying activity of certain antioxidant enzymes	
Enzyme extraction	46
Polyphenol oxidase (PPO. Ec 1.10.3.1) assay	46
Peroxidase (POX. Ec 1.11.1.7) assay	47
Superoxide dismutase (SOD. EC 1.15.1.1) assay	47
Catalase (CAT. EC 1.11.106) assay	48
Experimental results	
Part (1) pot experiment	
Lead accumulation in roots and shoots	49
Lead content in the polluted soil of Al-Gabal Al-Asfar Farm after	50

planting	
Effect on growth parameters	50
Effect on minerals	51
Effect on photosynthetic pigments	52
Effect on metabolities	53
Effect on H ₂ O ₂ , MDA and proline	54
Effect on Antioxidant compounds (ASA, GSH and phenols)	55
Effect on antioxidant enzymes	56
Part (2) field experiment	
Lead accumulation in roots and shoots	82
Lead content in the polluted soil of Al-Gabal Al-Asfar Farm after	82
planting	
Effect on organic acids	83
Effect on growth parameters	83
Effect on minerals	84
Effect on photosynthetic pigments	85
Effect on metabolities	85
Effect on H ₂ O ₂ , MDA and proline	86
Effect on antioxidant compounds (ASA, GSH and phenols)	86
Effect on antioxidant enzymes	86
Discussion	113

Summary	150
References	152
Arabic Summary	

List of Abbreviations

Abb.	Complete name
ABA	Abscicic acid
A. O. A. C	Official Methods of Analysis of the association of Official Agricultural Chemists
AS	Arsenic
ASA	Ascorbic acid
APX	Ascorbate peroxidase
Ca	Calcium
CAT	Catalase
Cd	Cadmium
Chl a	Chlorophyll a
Chl b	Chlorophyllb
Со	Cobalt
Cr	Chromium
Cu	Copper
EDTA	Ethylene diamine tetra acetic acid
Fe	Iron
FW	Fresh weight
GPX	Guaiacol peroxidase
GSH	Reduced glutathione
HCl	Hydrochloric acid
HgCl ₂	Mercuric chloride

HMs	Heavy metals
H ₂ O ₂	Hydrogen peroxide
H ₂ SO ₄	Sulphoric acid
K ⁺	Potassium
MDA	Malondialdehyde
Mg	Magnesium
Mn	Manganese
Na	Sodium
Ni	Nickel
P	Phosphorus
Pb	Lead
PPO	Polyphenol oxidase
POX	Peroxidase
RGR	Relative growth rate
ROS	Reactive oxygen species
SOD	Superoxide dismutase
TBA	Thiobabituric acid
TCA	Trichloroacetic acid
Zn	Zinc

Table	Title	Page

	Tables of the pot experiment		
1	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on fresh weight (FW), dry weight (DW) and relative growth rate (RGR) of <i>Phaseolus vulgaris</i> cultivated in polluted soil at all the three growing stages (a- seedling, b-flowering and c-fruiting).	59&60&61	
2	Effect of <i>Asp. niger</i> (1000 and 2500 μl/L) on leaf area, circumference of stem, length of internodes, no. of lateral roots, no. of internodes and no. of leaves of <i>Phaseolus vulgaris</i> plants cultivated in polluted soil at all the three growing stages (a- seedling, b-flowering and c-fruiting).	62&63&64	
3	Effect of Asp. niger (1000 and 2500 µl/L) on number, length, fresh weight and dry weight of pods and fresh weight and dry weight of a pod of Phaseolus vulgaris plants cultivatedin polluted soil.	65	
4	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) onmineral contents of <i>Phaseolusvulgaris</i> roots(K, Ca, P, Mg, Fe, and Zn) cultivated in polluted soil at all three growing stages.	66&67&68	
5	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on mineral contents of <i>Phaseolus vulgaris</i> shoots (K, Ca, P, Mg, Fe, and Zn) cultivated in polluted soil at all three growing stages.	69&70&71	
6	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on mineral contents of <i>Phaseolus vulgaris</i> seeds (K, Ca, P, Mg, Fe, and Zn) cultivated in polluted soil	72	
7	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on hydrogen peroxide, malondialdehyde and proline of <i>Phaseolus vulgaris</i> plants cultivated in polluted soil at three growing stages (aseedling, b-flowering and c-fruiting).	75&76	
8	Effect of Asp.niger (1000 and 2500 µl/L) on ascorbic acid, glutathione and phenols of Phaseolus vulgaris plants cultivated in polluted soil at all three growing stages (aseedling, b-flowering and c-fruiting).	77&78	

		T
9	Effect of Asp. niger (1000 and 2500 µl/L) on Polyphenoloxidase, peroxidase, catalase and superoxide dismutase of Phaseolus vulgaris cultivated in polluted soil at all growing stages (a-seedling, b-flowering and c-fruiting).	79&80&81
	Tables of the field experiment	
10	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on organic acids of polluted soil of Al-Gabal Al-Asfar Farm.	90
11	Effect of Asp. niger (1000 and 2500 µl/L) on fresh weight (FW), dry weight (DW) and relative growth rate (RGR) of Phaseolus vulgaris cultivated in polluted soil at all three growing stages (a- seedling, b-flowering and c-fruiting).	91&92&93
12	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on leaf area, circumference of stem, length of internodes, no. of lateral roots, no. of internodes and no. of leaves of <i>Phaseolus vulgaris</i> plants cultivated in polluted soil at all the three growing stages (a- seedling, b- Flowering and c-fruiting).	94&95&96
13	Effect of Asp. niger (1000 and 2500 µl/L) on number, length, fresh weight and dry weight of pods and fresh weight and dry weight of a pod of Phaseolus vulgaris plants cultivated in polluted soil.	97
14	Effect of Asp. niger (1000 and 2500 μl/L) onmineral contents of Phaseolus vulgaris roots (K, Ca, P, Mg, Fe and Zn)cultivated inpolluted soil at all three growing stages.	98&99&100
15	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) onmineral contents of <i>Phaseolus vulgaris</i> shoots (K, Ca, P, Mg, Fe and Zn) cultivated inpolluted soil at all three growing stages.	101&102&103
16	Effect of <i>Asp. niger</i> (1000 and 2500 µl/L) on mineral contents of <i>Phaseolus vulgaris</i> seeds (K, Ca, P, Mg, Fe, and Zn) cultivated in	104