

Ain Shams University Faculty of Science Physics Department

Potential application of locally produced steel alloys for nuclear reactor domain

A Thesis

Submitted for the degree of Ph.D. of science as a partial Fulfillment for Requirements of the Ph.D of science

In Physics

 B_V

Shaimaa Mohamed Hafez Osman

M.Sc., In Nuclear Physics

Prof. Dr/ Samir Ushah El khamisy

Professor of Nuclear Physics Ain Shams University

Prof. Dr/ Mamdouh Mahmoud Eissa

Professor of Steel & Ferroalloys Technology (CMRDI)

Assoc. Professor of Nuclear Physics & its applications, Al Azhar University

Assoc. Professor of Steel & Ferroalloys Technology (CMRDI)

Ain Shams University Faculty of Science Physics Department

Degree: Ph.D. in Physics

Title: Potential application of locally produced steel alloys for nuclear reactor domain

Name: Shaimaa Mohamed Hafez Osman

Thesis Advisors	Approved	
Prof. Dr. / Samir Ushah El-Khamisy		
Physics Department, Faculty of Science,		
Ain Shams University.		
Prof. Dr. /Mamdouh Mahmoud Eissa		
Central Metallurgical Research Institute (CMRD).		
Assoc. Prof. Dr/ Raed Mohamed El Shazly		
Physics Department, Faculty of Science,		
Al Azhar University		
Assoc. Prof. Dr/ Mohamed Kamal El Fawkhry		
Central Metallurgical Research Institute (CMRD).		

Ain Shams University Faculty of Science Physics Department

Name: Shaimaa Mohamed Hafez Osman

Degree: Ph.D. in Physics

Department: Physics

Faculty: Science

University: Ain Shams

Graduation date: 2009, Alexandria University

Registration date: 13/07/2016

Grant date: 2019

Ain Shams University Faculty of Science Physics Department

Degree: Ph.D. in Physics

Title: Potential application of locally produced steel alloys for nuclear reactor

domain

Name: Shaimaa Mohamed Hafez Osman

Approval Sheet

This Thesis for Ph.D. degree has been approved by

Prof. Dr/ Samir Ushah El-Khamisy
Professor of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams
University.
Prof. Dr. /Mamdouh Mahmoud Eissa
Professor of Steel & Ferroalloys Technology, Central Metallurgical Research Institute
(CMRD).
Prof. Dr/ Mohamed EL-Sayed El-Nagdy
Professor of Nuclear Physics & High Energy Physics, Physics Department, Faculty of
Science, Helwan University.
Prof. Dr/ Mohamed Harunor Rashid Khan
Professor of Nuclear Physics & High Energy Physics, Department of Physics &
Astronomy, Faculty of Sciences, King Saud University.

Acknowledgement

First of all, **Author** bow head thanking to "**Allah**" who paved the way and only by his will everything can be achieved, for helping and inspiring to accomplish all this work.

Author's very deep gratitude goes to the chairman of the physics department, for his interest, fruitful comments, support and encouragement

Author is deeply grateful and respect to his advisor Prof. Dr. Samir Ushah El khamisy, Professor of Nuclear Physics, Faculty of Science, Ain Shams University, for giving this opportunity to work under his esteemed guidance, for suggesting the work and supervising it, for useful comments and help during the course of this work. Under his supervision Author successfully overcomes many difficulties and learned a lot. Author also wishes to express profound gratitude for his constant encouragement and critical discussions throughout this research program and during the preparation of this thesis.

Deep thanks and sincere gratitude with appreciating to **Prof. Dr. Mamdouh**Mahmoud Eissa, Professor of Steel & Ferroalloys Technology, Central Metallurgical

Research and Developments Institute. This work would not have been possible without his

guidance, support and encouragement. For his effective supervision, helpful comments,

and the extensive time he devoted to this work, providing many facilities during

preparation and experimental measurements, and scientific supervision that helped to

accomplish this study.

Author is also grateful to his advisor Assoc. prof. Raed M. El Shazly, Associated Professor of Nuclear Physics and its applications, Faculty of Science, Al-Azhar University, for his supervision, advice, and crucial contribution from the very early stage of this research by his fruitful discussion throughout this work. Above all and the most needed, he provided me unflinching encouragement and support in various ways.

Author is deeply indebted to his advisor Assoc. Prof. Mohamed Kamal El-Fawkhargy, Associated Professor of Steel & Ferroalloys Technology, Central Metallurgical Research and Developments Institute, for his constant support and useful discussion. Without his help, this work would not be possible, providing necessary infrastructure and resources to accomplish the research work.

Author owes a great debt of gratitude to the completion of this work to Dr. Aly Saeed, Lecturer of Nuclear Physics, Faculty of Engineering, the Egyptian Russian University, for his sincere help, continuous supervision, continuous guidance and for his insightful comments and encouragement, and also for helping to find out answers for many questions which enabled widening research from various perspectives.

Author would like to thank Assoc. Prof. Saeed Nabil Saeed Ghali, and Eng. Hassan Bahaa El-Deen, Central Metallurgical Research and Developments Institute; they rendered enormous helps being apart during the whole tenure of measurements.

Finally, Author takes this opportunity to express sincere gratitude to her Family for their unceasing encouragement, help and their support in her decisions. Without whom Author could not have made it here.

Chaimaa M.Hafez

CONTENTS

Contents

	Page
Acknowledgement	I
Contents	III
List of Table	VI
List of Figures	VII
List of Abbreviations	X
List of Symbols	XI
Abstract	XII
Introduction	
Motivation	1
Objectives and experimental approach	2
Significance of the study	3
Chapter I	Nuclear Materials
1.1.Nuclear Power Reactors	4
1.1.1. Types Nuclear Power Plant Reactors	5
1.1.1.1.Pessurized Water Reactor (PWR)	5
1.1.1.2.Boiling Water Reactor (BWR)	5
1.2.Stainless steel alloys for Power Plant	6
1.2.1.Perilitic steel	6
1.2.2. Martensitic Chromium Steels	6
1.2.3.Ferritic Steel	7
1.2.4.Austinitic Steel	7
1.3. Stainless Steel as a reactor material	7
1.3.1.Reactor Fuel Cladding	7
1.3.2.Reactor Control Rod	8
1.3.3.Reactor Pressurized Vessel	8
1.3.4.Reactor Pipes and Valves	9
1.3.5.Steem Generators (SGs)	9
1.4. Mechanical characteristics of materials	10
1.4.1.Surface Hardness	10
1.4.1.1. Knoop and Vickers microhardness tests	10

Contents Page III

1.4.2. Tensile test	11
1.4.3. Impact energy test	11
1.5. Electrochemical corrosion for steel	12
1.6. Pervious Work	13
Chapter II Radiation Interaction	n with Matters
2.1.Attenuation of Neutral Particle Beam	17
2.1.1. Microscopic Cross Sections	18
2.1.2.Neutrons Interactions	18
2.1.2.1.Ptroduction of Neutrons	19
2.1.2.2. Absorption and moderation of neutrons	19
2.1.2.3. Neutron capture interactions (n, γ)	19
2.1.2.4. Elastic Scattering	20
2.1.2.5. Inelastic Scattering	20
2.1.3.Fission Cross Section	21
2.2.Attenuation of Charged Particles	21
2.2.1.Electrons	22
2.3.Gamma Ray Interactions	22
2.3.1.The Photoelectric Effect	22
2.3.2.Compton Scattering	23
2.3.3.Pair Production	23
2.4.Radiation Damage	25
Chapter III Experimen	tal Techniques
3.1.Preparation of Stainless Steel alloys	26
3.2.Chemical analysis	27
3.3.Metallograpy	28
3.4.Optical Microscope Observation	29
3.5.Mechanical Measurements	30
3.5.1. Vickers hardness measurements	30
3.5.3. Tensile properties measurements	30
3.5.4.Impact Energy Measurements	31
3.6. Corrosion residence measurements	32
3.7. Density measurements	33
3.8. Radiation Attenuation measurements	33

Contents Page IV

3.8.2.Gamma Rays Attenuation	35
3.8.3.Experimental Error Calculation	37
Chapter IV	Results and Discussions
Part One: modified SS316 alloys	38
4.1.1 Chemical composition	38
4.1.2. Microstructure observations	39
4.1.3. Corrosion rate	42
4.1.4. Mechanical properties	44
4.1.5. Attenuation properties	48
4.1.5.1. Neutrons attenuation properties	48
4.1.5.2. Gamma rays attenuation properties	53
Part Two: modified SS304 alloys	60
4.2.1 Chemical composition	60
4.2.2. Microstructure observations	61
4.2.3. Corrosion rate	66
4.2.4. Mechanical properties	67
4.2.5. Attenuation properties	72
4.2.5.1. Neutrons attenuation properties	72
4.2.5.2. Gamma rays attenuation properties	76
Conclusion	83
References	85
Appendix	92
Arabic Summary	1

32

3.8.1. Neutron Attenuation

Contents Page V

List of tables

NO.	Caption	Page
1.1	Nuclear power plants in commercial operation or operable	4
2.1	Principal nuclear data required for neutron shielding calculations	18
3.1	Chemical composition of modified stainless steel alloys in wt%	28
4.1	The chemical composition of AIS316 stainless steel samples	38
4.2	Corrosion rate values of the investigated steels in 3.5w.t% NaCl solution	43
4.3	Mechanical properties of the investigated stainless steel alloys; hardness, yield strength, ultimate tensile strength, elongation, reduction area and impact energy.	47
4.4	The neutron macroscopic cross sections for AISI316 alloys.	50
4.5	Gamma ray linear attenuation for AISI316 stainless steel	56
4.6	Half value layers of gamma ray for the studied AISI316 stainless steels	56
4.7	Half value layers of gamma ray for the studied AISI316 stainless steels	60
4.8	Corrosion rate of the investigated steels in 3.5w.t% NaCl solution	66
4.9	Mechanical properties of the investigated stainless steel alloys; hardness, yield strength, ultimate tensile strength, elongation, reduction area and impact energy	71
4.10	The neutron macroscopic cross sections for the studied alloys	74
4.11	Gamma ray linear attenuation for AISI304 stainless steel	79
4.12	Half value layers of gamma ray for the studied AISI304 stainless steels	80

List of tables Page VI

List of figures

NO	Caption	Page
1.1	A pressurized water reactor	5
1.2	A boiling water reactor	6
1.3	Reactor fuel assemblies	8
1.4	The reactor pressurized vessel	9
1.5	Stainless steel reactor pipes.	9
1.6	The horizontal shape of steam generator	10
2.1	Uniform illumination of a slab by radiation	17
2.2	Elastic and inelastic neutron scattering	20
2.3	The nuclear fission reaction	21
2.4	The photoelectric effect	23
2.5	Compton scattering	23
2.6	Electron-positron pair production	24
3.1	The pilot plant induction furnace	26
3.2	Spectrographic analyzer (SPGA)	27
3.3	Olympus PX51 optical microscope	29
3.4	Zwick-Roel hardness tester machine	30
3.5	EZ20 Tensile Testing Machine.	31
3.6	Charpy-V/Izod impact tester.	32
3.7	A computerized Potentiostat / Galvanostat (Autolab PG STAT 30)	33
3.8	The neutron source cell for ²⁴¹ Am –Be	34
3.9	Schematic diagram of neutrons measurement system.	35
3.10	Experimental setup of gamma ray narrow beam	36

List of figures Page VII

	transmission method	
4.1	Microstructure of the investigated stainless steels	39
4.2	SEM and EDX analysis of SS316B steel alloy	42
4.3	Corrosion rates of the investigated steels in 3.5w.t% NaCl solution	43
4.4	Mechanical properties of the investigated stainless steel alloys	44
4.5	Slow neutrons macroscopic cross sections (Σ_S)	48
4.6	Total slow neutrons macroscopic cross sections (Σ_S)	49
4.7	Neutrons (> 10 keV) macroscopic cross sections ($\Sigma_{>10 keV}$).	49
4.8	Half value layers of neutrons (> 10 keV) for AISI316 alloys	51
4.9	Half value layers of total slow neutrons for AISI316 alloys	52
4.10	Half value layers of slow neutrons for AISI316 alloys	52
4.11	Attenuation curves of SS316B at different gamma ray energies	53
4.12	Attenuation curves of SS316BTi at different gamma ray energies	54
4.13	Attenuation curves of SS316 at different gamma ray energies	54
4.14	Attenuation curves of SS316 at different gamma ray energies	55
4.15	Experimental and theoretical mass attenuation coefficients of the investigated AISI316 alloys.	57
4.16	Microstructure of the investigated AISI304 stainless steel alloys	61
4.17	SEM and EDX analysis of SS304MoTiB steel alloy	64

List of figures Page VIII

4.18	Corrosion rates of the investigated AISI304 Stainless steels alloys in 3.5w.t% NaCl solution	66
4.19	Mechanical properties of the investigated AISI304 stainless steel alloys.	68
4.20	Slow neutrons macroscopic cross sections (Σ_S)	72
4.21	Total slow neutrons macroscopic cross sections (Σ_t)	
4.22	Neutrons (> 10 keV) macroscopic cross sections ($\Sigma_{>10}$ keV).	73
4.23	Half value layers of neutrons (> 10 keV) for AISI304 alloys	75
4.24	Half value layers of slow neutrons for AISI304 alloys	75
4.25	Half value layers of total slow neutrons for AISI304 alloys	76
4.26	Attenuation curves of SS304B at different gamma ray energies.	77
4.27	Attenuation curves of SS304 at different gamma ray energies.	77
4.28	Attenuation curves of SS304BTi at different gamma ray energies	78
4.29	Attenuation curves of SS304Ti at different gamma ray energies.	78
4.30	Experimental and theoretical mass attenuation coefficients of the investigated AISI304 stainless steel alloys.	81

List of figures Page IX

List of abbreviations

Abbreviations	Description
ASS	Austenite stainless steel sample
BCC	Body center cubic crystal structure
BWR	Boiled water reactor
CMRDI	Central metallurgical research institute
Ci	Curie (Activity Unit)
ESR	Electro slag re-melting unit
FCC	Face center cubic crystal structure
He-3	Helium three neutrons detector
HVL	Half value layer
keV	Kilo-electron volt
NAI (TI)	Sodium iodide gamma ray detector
PWR	Pressurized water reactor
RPV	Reactor pressure vessel
SGs	Steam generators
SPGA	Spectrographic analysis
SS	Stainless steel
wt.	Weight

List of abbreviations Page X