The Role of Ultrasound Assessment in Achilles Tendon Pathology

Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

By

Huda Abdelhady Abdelhameed

M.B.B.Ch Faculty of Medicine, Ain Shams University

Under Supervision of

Dr. Hossam Sakr

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Mennatallah Hatem Shalaby

Associate Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Hossam Sakr**, Assistant Professor of Radiodiagnosis, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mennatallah Thatem Shalaby,** Associate Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Huda Abdelhady

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	
Introduction	1
Aim of the Work	9
Review of Literature	
Anatomy of Achilles Tendon	10
Metabolism and Biomechanics	
Ultrasonography and Tendons	25
Pathology of the Achilles Tendon	
Patients and Methods	
Results	
Illustrative Cases	
Discussion	
Summary	82
Conclusion	
References	
Arabic Summary	

List of Tables

Table No.	. Title	Page No.
Table (1):	Demographic data of the studied cas	ses45
Table (2):	Distribution of findings by clinical, in the studied patients	
Table (3):	U/S findings among the studied patr	ients51
Table (4):	MRI findings among the studied par	tients53
Table (5):	Comparison between clinical and U	S findings 55
Table (6):	Comparison between U/S finding	
Table (7):	Diagnostic accuracy of U/S in comparesults as a gold standard	
Table (8):	Diagnostic accuracy of clinical prediction of U/S results as a gold st	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	A specimen shows posterior view of ca	alf11
Fig. (2):	Posterior and lateral ankle teno	
Fig. (3):	A short-axis diagram depicting the of the different fascicles making up the	
Fig. (4):	A Schematic drawing and A specim right leg	
Fig. (5):	A Schematic image of the ultrastructures	
Fig. (6):	Patients foot is positioned in prone protruding of the examination table in the neutral-zero position	and held
Fig. (7):	The normal anatomy of the AT in B images	
Fig. (8):	The typical spindle-shaped thickeni AT associated with degeneration, a focal hypoechoic areas in a 44- year-ol	s well as
Fig. (9):	Longitudinal and transverse US posterior ankle showed abnormally harea within "partial tear"	ypoechoic
Fig. (10):	An insertional tendinopathy retrocalcaneal bursitis in a 55-year-old	
Fig. (11):	Ankle, AT	39
Fig. (12):	Pie chart showing gender distributi study	
Fig. (13):	Pie chart showing distribution o	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (14):	Pie chart showing Number of clinical in the studied patients	•
Fig. (15):	Pie chart showing Number of US fir the studied patients	
Fig. (16):	Pie chart showing Number of MRI fine the studied patients	•
Fig. (17):	Column chart showing Clinical distribution among the studied patien	-
Fig. (18):	Column chart showing U/S findings as studied patients	-
Fig. (19):	Column chart showing MRI finding the studied patients	_
Fig. (20):	Column chart showing comparison clinical and U/S findings	
Fig. (21):	Column chart showing comparison clinical and MRI findings	
Fig. (22):	Column chart showing comparison US and MRI findings	
Fig. (23):	Column chart showing diagnostic acc clinical (total) in prediction of U/S res gold standard	sults as a
Fig. (24):	Longitudinal and transverse US showing thickening of the AT and loss continuity with partial tear, color images show increased vascularity in tendon.	of fibers Doppler aside the

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (25):	MRI T2 weighted image sagittal vidiffuse non uniform thickening of showing irregular outline with loss of sharp concave anterior surface vidiscontinuity of fibers	f the AT its normal vith focal
Fig. (26):	Longitudinal US images of the left A	T at rest 64
Fig. (27):	US longitudinal and transverse view	s 66
Fig. (28):	US longitudinal and transverse s diffuse thickening of the A heterogeneous pattern and hypoechogenic foci within the tendon	AT with multiple
Fig. (29):	MRI T1WI sagittal scan shows gross & heterogeneous increased signal in TAT up to calcaneal insertion with focalesion in the distal tendon with is signal with intact surrounding fat plant	'1 in distal l lobulated so intense
Fig. (30):	US longitudinal and transvers displaying thickening of the ten abnormally hypoechoic	don with
Fig. (31):	Longitudinal and panoramic views of	f AT 72
Fig. (32):	MRI, STIR-Sagittal and T2WI showing full thickness tear of the gapping	AT with
Fig. (33):	Longitudinal and transverse US showing thickened AT with echogenicity and preserved fibers T1 MRI image	increased weighted

List of Abbreviations

Abb.	Full term
<i>AP</i>	Anteronosterior
	Achilles Tendon
Cal	
<i>CSA</i>	. Cross-Sectional Area
<i>ECM</i>	.Extracellular Matrix
FB	.Fibularis Brevis
<i>FDL</i>	.Flexor Digitorum Longus
<i>FHL</i>	.Flexor Hallusis Longus
<i>FL</i>	.Fibularis Longus
<i>G</i>	. Gastrocinemius
<i>LM</i>	.Lateral Malleolus
<i>MM</i>	.Medial Malleolus
<i>MRI</i>	.Magnetic Resonance Imaging
<i>MSK</i>	. Musculos kelet al
S	.Soleus
<i>SN</i>	.Sural Nerve
SSV	.Small Saphenous Vein
<i>TP</i>	.Tibialis Posterior
<i>US</i>	. Ultrasonography

ABSTRACT

Background: Tendons are connective tissues that transmit the force produced by muscle to bone and also prevent muscle damage by acting as shock absorbers. The Achilles tendon is the single largest, thickest and strongest tendon in the human body that transmit the force of powerful calf muscles to foot facilitating walking and running. This has long been known as a site susceptible to disabling injury. Forces up to 12 times bodyweight may arise during sporting activity. US performed with high-resolution linear-array probes has become increasingly important in the assessment of ligaments and tendons around the ankle because it is low cost, fast, readily available, and free of ionizing radiation.

Aim of the Work: to provide an overview of clinical applications of ultrasound in assessment of pathological Achilles tendons. And to demonstrate the role of ultrasound in diagnosis of Achilles tendon pathology after clinical diagnosis.

Patients and Methods: This study is a prospective study, it was conducted in Radiology Department at Ain-shams university hospitals (El-Demerdash) from September 2018 till March 2019. it included 20 patients who were referred from the orthopedics, sports medicine and physical medicine outpatients.

Results: In our study US was capable of detecting almost all Achilles tendon abnormalities with high accuracy. The main noticeable limitation was the assessment of the bone marrow. In our study, the sensitivity, specificity and accuracy for US for Achilles tendon were 100%, 75% and 95% respectively.Both US and MRI are used in the evaluation of superficial structures, such as tendons and ligaments. The choice between US and MRI in such evaluations is determined by availability, referring physician preference, and the experience of the radiologist because in many settings accuracies can be similar.

Conclusion: Ultrasonography is an accurate and sensitive modality in evaluation of the Achilles tendon, it and can be used either as primary tool of investigation or as complementary tool with MRI and even in some cases may be used as a final method of diagnosis without need for further correlation with any other imaging techniques.

Keywords: Ultrasound - Achilles Tendon – Ultrasonography- MRI

INTRODUCTION

endons are connective tissues that transmit the force produced by muscle to bone and also prevent muscle damage by acting as shock absorbers. The Achilles tendon (AT) is the single largest, thickest and strongest tendon in the human body that transmit the force of powerful calf muscles to foot facilitating walking and running. This has long been known as a site susceptible to disabling injury. Forces up to 12 times bodyweight may arise during sporting activity. (1)

AT disorders are among the more frequent maladies encountered in sports medicine. They are not only common but has shown enormous rise in incidence over the past three decades. They are commonly associated with overuse injuries and can affect quality of movement. The combined adaptive and micro traumatic course of action that produces an increase in the level of glycoprotein matrix, tenocyte and fibroblast proliferation leads to degeneration of tendon by forming disorganized collagen. This pathological process leads to thickening, vascularisation and hypoechogenicity of the diseased tendon. (2)

The various types of overuse tendon injuries include tendinopathies, peritendinitis and tendon rupture. Increased tendon thickness is the most commonly mentioned indicator of tendinopathies. A significant correlation between progressive AT thickening, AT rupture and tendon abnormalities has been reported in previous studies. (1)

US performed with high-resolution linear-array probes has become increasingly important in the assessment of ligaments and tendons around the ankle because it is low cost, fast, readily available, and free of ionizing radiation. (3)

US can provide a detailed depiction of normal anatomic structures and is effective for evaluating ligament integrity. In addition, US allows the performance of dynamic maneuvers, which may contribute to increased visibility of normal ligaments and improved detection of tears. It can facilitate accurate identification, localization and differentiation between synovial, tendinous and entheseal inflammation as well as joint, bursal and soft tissue fluid collection ^(2, 3).

The most common limitation of US is unfamiliarity with the Technique and pathologic condition at US ^(4, 5).

AIM OF THE WORK

The aim of this study is to provide an overview of clinical applications of US in assessment of pathological Achilles tendons. And to demonstrate the role of US in diagnosis of AT pathology after clinical diagnosis.

Chapter 1

ANATOMY OF ACHILLES TENDON

chilles, the ancient Greek hero of the Trojan war, gives his name to the AT. Achilles was the son of the nymph, Thetis, who tried to make him immortal by dipping him in the river Styx. However, he was left vulnerable at the part of the body she held him by: his heel. (6)

Achilles was killed by a poisoned arrow fired by the Trojan prince Paris which embedded in his only vulnerable point; his heel. This has given rise to the description of a persons weakest point being called their 'Achilles heel'. (6, 7)

The AT is the thickest and strongest tendon in the human body, It begins near the middle of the calf fusing with the gastrocnemius muscle proximally.

It is broad close to its origin and receives muscle fibres from soleus almost to its lower end (**Fig. 1**). It is located in the posterior superficial compartment of the lower leg. The nerve and vessels of the posterior compartment, the tibial nerve, the posterior tibial artery and the peroneal artery, either directly or through their branches, supply the AT and the originator muscles. ^(6,7)

Fig. (1): A specimen shows posterior view of calf. AT begins near the middle of the calf fusing with the gastrocnemius muscle proximally. It is broad, flat shape near its origin and receives muscle fibres from soleus almost to its lower end.⁽⁷⁾

It is formed by confluence of the individual tendons of the gastrocnemius and soleus muscles. The tendon fibres those of the soleus component insert into the postero-medial aspect and that from the gastrocnemius inserts into the posterolateral aspect of the calcaneus

The gastrocnemius accounts for two thirds of the fibres of AT and soleus contributes one third but variation in this pattern occurs in adults, the tendon is about 10 to 15 cm in length and has a thickness of 4-7 mm. ^(7, 8)